Compare commits
75 Commits
naive-nlu(
...
naive-nlu
Author | SHA1 | Date | |
---|---|---|---|
178dadc57f | |||
712503804d | |||
1ded981099 | |||
a444766c7c | |||
c18c9b8cb1 | |||
8b67b96d2f | |||
1306306723 | |||
45cc3a8a31 | |||
6c46f9db4b | |||
ee5492e69d | |||
d63781a0d2 | |||
6fb1e1e649 | |||
79034f85a9 | |||
998a183fd2 | |||
d601ae3f83 | |||
40b63128af | |||
fc37450565 | |||
75174e1736 | |||
a0810dd0e8 | |||
13ed48c6b4 | |||
0e41a98857 | |||
c1055bd703 | |||
75f00e7171 | |||
2f76cdc260 | |||
6278cc43f7 | |||
bb7d438e0d | |||
359f858c39 | |||
58fb9fb188 | |||
2c36dd9b7e | |||
d607b2210e | |||
542c4fca4b | |||
3abbd40b26 | |||
23256b945d | |||
91dd5a9c6c | |||
e6fbbc19e0 | |||
379855766c | |||
fde31b69a8 | |||
4b12bc589e | |||
16a895dc22 | |||
4e8f82c0a5 | |||
d23329b019 | |||
fae11eb875 | |||
b16df096d7 | |||
dad1ef6fd8 | |||
46dcf55793 | |||
b42bf37f77 | |||
0fbb9238eb | |||
d3b604efca | |||
9d49d00688 | |||
aa7bee4c8b | |||
e0a5f02c34 | |||
8e304b2a09 | |||
a7f70d2888 | |||
9ed43aa362 | |||
89b281fd6f | |||
7cdf8a310d | |||
e6cbb54382 | |||
75d690120b | |||
cbeefcf76b | |||
2bfe676b2d | |||
02f909269a | |||
4d7afb0174 | |||
e51ba71ec5 | |||
a99449c04a | |||
bbba6b75e1 | |||
d029ecd91d | |||
22534160c9 | |||
0b52ade6b5 | |||
3cfc03373f | |||
e6e8146478 | |||
586ac76d1f | |||
460ad73bba | |||
6693b7deb0 | |||
d6628101de | |||
23ae882161 |
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,5 +1,7 @@
|
||||
*#*
|
||||
*~
|
||||
.vscode
|
||||
*.ba?k
|
||||
*.pyc
|
||||
__pycache__
|
||||
treeNLU-*session*.org
|
||||
|
4
naive-nlu/cli.py
Normal file
4
naive-nlu/cli.py
Normal file
@ -0,0 +1,4 @@
|
||||
from tree_nlu import cli
|
||||
|
||||
if __name__ == '__main__':
|
||||
cli.main()
|
23
naive-nlu/tree_nlu/atoms.py
Normal file
23
naive-nlu/tree_nlu/atoms.py
Normal file
@ -0,0 +1,23 @@
|
||||
'''
|
||||
Analogous to erlang ones.
|
||||
|
||||
"An atom is a literal, a constant with name."
|
||||
'''
|
||||
|
||||
from collections import namedtuple
|
||||
|
||||
Atom = namedtuple('Atom', field_names='name')
|
||||
|
||||
def is_atom(element, name=None):
|
||||
'''Check if an element is an atom with a specific name.'''
|
||||
if not isinstance(element, Atom):
|
||||
return False
|
||||
|
||||
if name is None:
|
||||
return True
|
||||
|
||||
return element.name == name
|
||||
|
||||
def a(name):
|
||||
'''Build an atom with a given name.'''
|
||||
return Atom(name)
|
65
naive-nlu/tree_nlu/cli.py
Normal file
65
naive-nlu/tree_nlu/cli.py
Normal file
@ -0,0 +1,65 @@
|
||||
import logging
|
||||
import datetime
|
||||
from .session.org_mode import (
|
||||
global_session as session,
|
||||
create_global_session,
|
||||
)
|
||||
from .knowledge_base import KnowledgeBase
|
||||
from .visualization import (
|
||||
show_knowledge,
|
||||
show_samples,
|
||||
)
|
||||
from .tests import gac_100
|
||||
from .modifiable_property import (
|
||||
ModifiableProperty,
|
||||
ModifiablePropertyWithAst,
|
||||
is_modifiable_property,
|
||||
)
|
||||
|
||||
|
||||
bye_phrases = ['bye', 'exit']
|
||||
|
||||
|
||||
def gen_session_name():
|
||||
now = datetime.datetime.utcnow()
|
||||
return "treeNLU-cli-session-{}.org".format(
|
||||
now.strftime("%y_%m_%d %H:%M:%S_%f"))
|
||||
|
||||
|
||||
def main():
|
||||
create_global_session(gen_session_name())
|
||||
logging.getLogger().setLevel(logging.INFO)
|
||||
knowledge = gac_100.main()
|
||||
logging.getLogger().setLevel(logging.DEBUG)
|
||||
while True:
|
||||
try:
|
||||
data = input("> ").strip()
|
||||
except EOFError:
|
||||
print("bye")
|
||||
break
|
||||
if data.lower() in bye_phrases:
|
||||
break
|
||||
if not data:
|
||||
continue
|
||||
|
||||
if data == '/show':
|
||||
show_knowledge(knowledge)
|
||||
continue
|
||||
elif data == '/samples':
|
||||
show_samples(knowledge)
|
||||
continue
|
||||
|
||||
with session().log(data):
|
||||
ret = knowledge.process(data)
|
||||
if ret:
|
||||
result, _, _ = ret
|
||||
if not is_modifiable_property(result):
|
||||
print("<", result)
|
||||
else:
|
||||
result.setter()
|
||||
print("OK")
|
||||
elif ret is None:
|
||||
print("- Couldn't understand that, oops... -")
|
||||
else:
|
||||
print("Unhandled response:", ret)
|
||||
print("< Bye!")
|
@ -1,45 +1,65 @@
|
||||
import copy
|
||||
|
||||
import logging
|
||||
|
||||
from . import parsing
|
||||
from .session.org_mode import global_session as session
|
||||
|
||||
from .atoms import Atom
|
||||
from . import layered_model
|
||||
from . import knowledge_evaluation
|
||||
from .modifiable_property import is_modifiable_property
|
||||
|
||||
import random
|
||||
|
||||
def diff_knowledge(before, after):
|
||||
import jsondiff
|
||||
return jsondiff.diff(before, after)
|
||||
|
||||
|
||||
|
||||
class KnowledgeBase(object):
|
||||
def __init__(self, knowledge, examples=[], trained=[]):
|
||||
def __init__(self, knowledge={}, examples=[], trained=[]):
|
||||
self.knowledge = copy.copy(knowledge)
|
||||
self.originals = []
|
||||
self.examples = copy.copy(examples)
|
||||
self.trained = copy.copy(trained)
|
||||
self.layers = layered_model.BaseModel(self)
|
||||
|
||||
## Parsing
|
||||
def train(self, examples):
|
||||
knowledge_before = copy.deepcopy(self.knowledge)
|
||||
|
||||
with session().log('Train'):
|
||||
# Parse everything
|
||||
parsed_examples = []
|
||||
for example in examples:
|
||||
logging.info("\x1b[7;32m> {} \x1b[0m".format(example))
|
||||
tokens, decomposition, inferred_tree = parsing.integrate_language(self, example)
|
||||
logging.info(tokens)
|
||||
# If there's parsed data, leverage it ASAP
|
||||
if 'parsed' in example and isinstance(example['parsed'], tuple):
|
||||
with session().log('parsed information integration'):
|
||||
result = knowledge_evaluation.integrate_information(self.knowledge, {
|
||||
"parsed": example['parsed'],
|
||||
})
|
||||
self.act_upon(result)
|
||||
|
||||
with session().log("language integration"):
|
||||
for tokens, decomposition, inferred_tree in self.layers.integrate(self, example):
|
||||
session().annotate("Tokens: {}".format(tokens))
|
||||
session().annotate("Inferred tree: {}".format(inferred_tree))
|
||||
|
||||
with session().log("full information integration"):
|
||||
tokens = self.layers.tokenization.tokenize(example['text'], return_one=True)
|
||||
result = knowledge_evaluation.integrate_information(self.knowledge, {
|
||||
"elements": tokens,
|
||||
"decomposition": decomposition,
|
||||
"parsed": inferred_tree,
|
||||
})
|
||||
|
||||
logging.info("\x1b[7;33m< {} \x1b[0m".format(self.get_value(result)))
|
||||
session().annotate("Result: {}".format(self.get_value(result)))
|
||||
self.act_upon(result)
|
||||
logging.info("\x1b[7;34m> set: {} \x1b[0m".format(self.get_value(result)))
|
||||
session().annotate("Set: {}".format(self.get_value(result)))
|
||||
self.examples.append((decomposition, inferred_tree))
|
||||
self.originals.append(example['text'])
|
||||
|
||||
# Reduce values
|
||||
self.trained = parsing.reprocess_language_knowledge(self, self.examples)
|
||||
with session().log("reprocessing"):
|
||||
res = self.layers.reprocess(self.examples)
|
||||
self.trained = res
|
||||
|
||||
knowledge_after = copy.deepcopy(self.knowledge)
|
||||
knowledge_diff_getter = lambda: diff_knowledge(knowledge_before,
|
||||
@ -47,18 +67,21 @@ class KnowledgeBase(object):
|
||||
|
||||
return knowledge_diff_getter
|
||||
|
||||
|
||||
def process(self, row):
|
||||
knowledge_before = copy.deepcopy(self.knowledge)
|
||||
logging.info("\x1b[7;32m> {} \x1b[0m".format(row))
|
||||
tokens = parsing.to_tokens(row)
|
||||
tokens, inferred_tree = parsing.get_fit(self, tokens)
|
||||
with session().log("Process: {}".format(row)):
|
||||
fit = list(self.layers.process(self, row))
|
||||
if len(fit) == 0:
|
||||
return None
|
||||
|
||||
tokens, inferred_tree = fit[0]
|
||||
result = knowledge_evaluation.integrate_information(self.knowledge,
|
||||
{
|
||||
"elements": tokens,
|
||||
"parsed": inferred_tree,
|
||||
})
|
||||
self.act_upon(result)
|
||||
session().annotate("Result: {}".format(result))
|
||||
|
||||
knowledge_after = copy.deepcopy(self.knowledge)
|
||||
knowledge_diff_getter = lambda: diff_knowledge(knowledge_before,
|
||||
|
@ -1,3 +1,5 @@
|
||||
from .session.org_mode import global_session as session
|
||||
|
||||
from .modifiable_property import (
|
||||
ModifiableProperty,
|
||||
ModifiablePropertyWithAst,
|
||||
@ -9,6 +11,7 @@ def resolve(knowledge_base, elements, value):
|
||||
if isinstance(value, int):
|
||||
return elements[value]
|
||||
elif isinstance(value, tuple) or isinstance(value, list):
|
||||
session().annotate("V: {} {}".format(value, elements))
|
||||
return integrate_information(knowledge_base, {
|
||||
"elements": elements,
|
||||
"parsed": value,
|
||||
@ -41,16 +44,42 @@ def get_subquery_type(knowledge_base, atom):
|
||||
|
||||
|
||||
def property_for_value(knowledge_base, value):
|
||||
if value in knowledge_base:
|
||||
# Annotate the property as property
|
||||
groups = knowledge_base[value].get('groups', {'property'})
|
||||
groups.add('property')
|
||||
knowledge_base[value]['groups'] = groups
|
||||
|
||||
# And find the property "name"
|
||||
if 'as_property' in knowledge_base[value]:
|
||||
return knowledge_base[value]['as_property']
|
||||
|
||||
return knowledge_base[value].get('groups', {'property'})
|
||||
else:
|
||||
# Consider that any property is... a property
|
||||
knowledge_base[value] = {'groups': {'property'}}
|
||||
return {'property'}
|
||||
|
||||
|
||||
def modifiable_property_from_property(prop, path, value):
|
||||
def getter():
|
||||
nonlocal prop, path, value
|
||||
if isinstance(path, set):
|
||||
# If the property is from a set, it's true if any possible
|
||||
# path has a element as true
|
||||
return any(map(lambda possible_path: ((possible_path in prop)
|
||||
and
|
||||
(prop[possible_path] == value)),
|
||||
path))
|
||||
else:
|
||||
return (path in prop) and prop[path] == value
|
||||
|
||||
def setter():
|
||||
nonlocal prop, path, value
|
||||
if isinstance(path, set):
|
||||
for possible_path in path:
|
||||
prop[possible_path] = value
|
||||
else:
|
||||
prop[path] = value
|
||||
|
||||
return ModifiableProperty(
|
||||
@ -74,12 +103,31 @@ def exists_property_with_value(knowledge_base, elements, subj, value):
|
||||
|
||||
|
||||
def modifiable_element_for_existance_in_set(container, set_name, element):
|
||||
session().annotate("-----({} {} {})".format(container, set_name, element))
|
||||
|
||||
def getter():
|
||||
nonlocal container, set_name, element
|
||||
session().annotate(" get({} {} {})".format(container, set_name, element))
|
||||
return (set_name in container) and (element in container[set_name])
|
||||
|
||||
def setter():
|
||||
nonlocal container, set_name, element
|
||||
session().annotate(" add({} {} {})".format(container, set_name, element))
|
||||
return container[set_name].add(element)
|
||||
|
||||
return ModifiableProperty(
|
||||
getter=getter,
|
||||
setter=setter,
|
||||
)
|
||||
|
||||
def modifiable_element_for_existance_in_group(container, element, backlink, set_name='groups'):
|
||||
def getter():
|
||||
nonlocal container, element, backlink, set_name
|
||||
return (set_name in container) and (element in container[set_name])
|
||||
|
||||
def setter():
|
||||
nonlocal container, set_name, element
|
||||
backlink['groups'].add(set_name)
|
||||
return container[set_name].add(element)
|
||||
|
||||
return ModifiableProperty(
|
||||
@ -92,17 +140,22 @@ def pertenence_to_group(knowledge_base, elements, subj, group):
|
||||
group = resolve(knowledge_base, elements, group)
|
||||
|
||||
if subj not in knowledge_base:
|
||||
knowledge_base[subj] = {}
|
||||
knowledge_base[subj] = {'groups': set()}
|
||||
|
||||
if "groups" not in knowledge_base[subj]:
|
||||
knowledge_base[subj]["groups"] = set()
|
||||
|
||||
return modifiable_element_for_existance_in_set(
|
||||
container=knowledge_base[subj],
|
||||
set_name="groups",
|
||||
element=group
|
||||
)
|
||||
if group not in knowledge_base:
|
||||
knowledge_base[group] = {'groups': set()}
|
||||
|
||||
if "groups" not in knowledge_base[group]:
|
||||
knowledge_base[group]["groups"] = set()
|
||||
|
||||
return modifiable_element_for_existance_in_group(
|
||||
container=knowledge_base[subj],
|
||||
element=group,
|
||||
backlink=knowledge_base[group],
|
||||
)
|
||||
|
||||
def has_capacity(knowledge_base, elements, subj, capacity):
|
||||
subj = resolve(knowledge_base, elements, subj)
|
||||
@ -128,12 +181,70 @@ def question(knowledge_base, elements, subj):
|
||||
return subj.getter()
|
||||
return subj
|
||||
|
||||
def implies(knowledge_base, elements, precedent, consequent):
|
||||
precedent = resolve(knowledge_base, elements, precedent)
|
||||
consequent = resolve(knowledge_base, elements, consequent)
|
||||
|
||||
if precedent not in knowledge_base:
|
||||
knowledge_base[precedent] = {'groups': set()}
|
||||
|
||||
if "implications" not in knowledge_base[precedent]:
|
||||
knowledge_base[precedent]["implications"] = set()
|
||||
|
||||
return modifiable_element_for_existance_in_set(
|
||||
container=knowledge_base[precedent],
|
||||
set_name="implications",
|
||||
element=consequent
|
||||
)
|
||||
|
||||
|
||||
def property_has_value(knowledge_base, elements, subj, prop, value):
|
||||
subj = resolve(knowledge_base, elements, subj)
|
||||
prop = resolve(knowledge_base, elements, prop)
|
||||
value = resolve(knowledge_base, elements, value)
|
||||
|
||||
if subj not in knowledge_base:
|
||||
knowledge_base[subj] = {'groups': set()}
|
||||
|
||||
if prop not in knowledge_base[subj]:
|
||||
knowledge_base[subj][prop] = set()
|
||||
|
||||
return modifiable_element_for_existance_in_set(
|
||||
container=knowledge_base[subj],
|
||||
set_name=prop,
|
||||
element=value
|
||||
)
|
||||
|
||||
def perform_verb_over_object(knowledge_base, elements, subj, verb, obj):
|
||||
subj = resolve(knowledge_base, elements, subj)
|
||||
verb = resolve(knowledge_base, elements, verb)
|
||||
obj = resolve(knowledge_base, elements, obj)
|
||||
session().annotate("({} {} {})".format(verb, subj, obj))
|
||||
|
||||
if subj not in knowledge_base:
|
||||
knowledge_base[subj] = {'groups': set()}
|
||||
|
||||
if 'performs-over' not in knowledge_base[subj]:
|
||||
knowledge_base[subj]['performs-over'] = {}
|
||||
|
||||
if verb not in knowledge_base[subj]['performs-over']:
|
||||
knowledge_base[subj]['performs-over'][verb] = set()
|
||||
|
||||
return modifiable_element_for_existance_in_set(
|
||||
container=knowledge_base[subj]['performs-over'],
|
||||
set_name=verb,
|
||||
element=obj
|
||||
)
|
||||
|
||||
|
||||
knowledge_ingestion = {
|
||||
"exists-property-with-value": exists_property_with_value,
|
||||
"pertenence-to-group": pertenence_to_group,
|
||||
"has-capacity": has_capacity,
|
||||
"question": question,
|
||||
"implies": implies,
|
||||
"property-has-value": property_has_value,
|
||||
"perform-verb-over-object": perform_verb_over_object,
|
||||
}
|
||||
|
||||
|
||||
@ -152,6 +263,29 @@ def integrate_information(knowledge_base, example):
|
||||
args = ast[1:]
|
||||
elements = example.get('elements', None)
|
||||
|
||||
session().annotate("Integrating:")
|
||||
session().annotate("AST: {}".format(ast))
|
||||
session().annotate("ARG: {}".format(elements))
|
||||
session().annotate("------------")
|
||||
|
||||
return tagged_with_ast(
|
||||
ast, elements,
|
||||
knowledge_ingestion[method](knowledge_base, elements, *args))
|
||||
|
||||
def can_be_used_in_place(knowledge, token, minisegment):
|
||||
if token not in knowledge.knowledge:
|
||||
return True
|
||||
|
||||
info = knowledge.knowledge[token]
|
||||
info_groups = info.get('groups', set())
|
||||
minisegment_groups = minisegment.get('groups', set())
|
||||
|
||||
# Common group
|
||||
if len(info_groups & minisegment_groups) > 0:
|
||||
return True
|
||||
|
||||
# Neither has a group
|
||||
elif len(info_groups) == 0 == len(minisegment_groups):
|
||||
return True
|
||||
|
||||
return False
|
||||
|
49
naive-nlu/tree_nlu/layered_model.py
Normal file
49
naive-nlu/tree_nlu/layered_model.py
Normal file
@ -0,0 +1,49 @@
|
||||
from .layers import tokenization_layer
|
||||
from .layers import parsing_layer
|
||||
from .layers import parsing
|
||||
from .session.org_mode import global_session as session
|
||||
|
||||
|
||||
def make_yield_pipe(layers, knowledge_base, example, func):
|
||||
if len(layers) < 1:
|
||||
yield example
|
||||
return
|
||||
|
||||
input_generator = make_yield_pipe(layers[:-1], knowledge_base, example, func)
|
||||
for input in input_generator:
|
||||
session().annotate("[{}] --> {}".format(len(layers), input))
|
||||
for d in list(func(layers[-1], input)):
|
||||
yield d
|
||||
|
||||
|
||||
class BaseModel:
|
||||
def __init__(self, knowledge_base):
|
||||
self.tokenization = tokenization_layer.TokenizationLayer(knowledge_base)
|
||||
self.parsing = parsing_layer.ParsingLayer()
|
||||
|
||||
self.layers = [
|
||||
self.tokenization,
|
||||
self.parsing,
|
||||
]
|
||||
|
||||
def reprocess(self, examples):
|
||||
pattern_examples = []
|
||||
for i, sample in enumerate(examples):
|
||||
other = examples[:i] + examples[i + 1:]
|
||||
match = parsing.get_matching(sample, other)
|
||||
if len(match) > 0:
|
||||
sample = (match, sample[1],)
|
||||
pattern_examples.append(sample)
|
||||
|
||||
return pattern_examples
|
||||
|
||||
def integrate(self, knowledge_base, example):
|
||||
yield from make_yield_pipe(self.layers, knowledge_base,
|
||||
example, lambda l, i: l.integrate(knowledge_base, i))
|
||||
|
||||
def process(self, knowledge_base, example):
|
||||
yield from make_yield_pipe(self.layers, knowledge_base,
|
||||
example, lambda l, i: l.process(knowledge_base, i))
|
||||
|
||||
def tokenize(self, row, return_one=True):
|
||||
return self.tokenization.to_tokens(row)
|
500
naive-nlu/tree_nlu/layers/parsing.py
Normal file
500
naive-nlu/tree_nlu/layers/parsing.py
Normal file
@ -0,0 +1,500 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
from ..session.org_mode import global_session as session
|
||||
import re
|
||||
import copy
|
||||
|
||||
from functools import reduce
|
||||
from typing import List, Dict
|
||||
from ..modifiable_property import ModifiableProperty
|
||||
from .. import parameters
|
||||
from ..atoms import Atom, a, is_atom
|
||||
from .. import knowledge_evaluation
|
||||
|
||||
def make_template(knowledge_base, tokens, parsed):
|
||||
matcher = list(tokens)
|
||||
template = list(parsed)
|
||||
session().annotate(" -- MK TEMPLATE --")
|
||||
session().annotate("MATCHR: {}".format(matcher))
|
||||
session().annotate("TEMPLT: {}".format(template))
|
||||
for i in range(len(matcher)):
|
||||
word = matcher[i]
|
||||
if word in template:
|
||||
template[template.index(word)] = i
|
||||
matcher[i] = {
|
||||
'groups': set(knowledge_base.knowledge.get(word, {}).get('groups', set())),
|
||||
}
|
||||
return tokens, matcher, template
|
||||
|
||||
|
||||
def is_bottom_level(tree):
|
||||
for element in tree:
|
||||
if isinstance(element, list) or isinstance(element, tuple):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def get_lower_levels(parsed):
|
||||
lower = []
|
||||
def aux(subtree, path):
|
||||
nonlocal lower
|
||||
deeper = len(path) == 0
|
||||
for i, element in enumerate(subtree):
|
||||
if isinstance(element, list) or isinstance(element, tuple):
|
||||
aux(element, path + (i,))
|
||||
deeper = True
|
||||
|
||||
if not deeper:
|
||||
lower.append((path, subtree))
|
||||
|
||||
aux(parsed, path=())
|
||||
return lower
|
||||
|
||||
|
||||
# TODO: probably optimize this, it creates lots of unnecessary tuples
|
||||
def replace_position(tree, position, new_element):
|
||||
session().annotate("REPLACE POSITIONS:")
|
||||
session().annotate(" TREE : {}".format(tree))
|
||||
session().annotate("POSITION: {}".format(position))
|
||||
session().annotate("NEW ELEM: {}".format(new_element))
|
||||
session().annotate("------------------")
|
||||
|
||||
def aux(current_tree, remaining_route):
|
||||
if len(remaining_route) == 0:
|
||||
return new_element
|
||||
|
||||
else:
|
||||
step = remaining_route[0]
|
||||
return (
|
||||
tree[:step]
|
||||
+ (aux(tree[step], remaining_route[1:]),)
|
||||
+ tree[step + 2:]
|
||||
)
|
||||
|
||||
result = aux(tree, position)
|
||||
session().annotate("-RESULT: {}".format(result))
|
||||
return result
|
||||
|
||||
|
||||
def integrate_language(knowledge_base, example):
|
||||
text = example["text"].lower()
|
||||
parsed = example["parsed"]
|
||||
|
||||
tokens = example['tokens']
|
||||
resolved_parsed = copy.deepcopy(parsed)
|
||||
|
||||
while True:
|
||||
session().annotate("P: {}".format(resolved_parsed))
|
||||
lower_levels = get_lower_levels(resolved_parsed)
|
||||
session().annotate("Lower: {}".format(lower_levels))
|
||||
if len(lower_levels) == 0:
|
||||
break
|
||||
|
||||
for position, atom in lower_levels:
|
||||
with session().log("Atom {}".format(atom)):
|
||||
result = None
|
||||
similars = get_similar_tree(knowledge_base, atom, tokens)
|
||||
for similar in similars:
|
||||
result = build_remix_matrix(knowledge_base, tokens, atom, similar)
|
||||
if result is not None:
|
||||
break
|
||||
else:
|
||||
raise Exception('Similar not found')
|
||||
|
||||
remix, (start_bounds, end_bounds) = result
|
||||
|
||||
after_remix = apply_remix(tokens[len(start_bounds):-len(end_bounds)], remix)
|
||||
session().annotate("--FIND MIX--")
|
||||
session().annotate("-MIX- | {}".format(remix))
|
||||
session().annotate("-FRM- | {}".format(tokens))
|
||||
session().annotate("-AFT- | {}".format(after_remix))
|
||||
|
||||
session().annotate("--- TEMPLATE ---")
|
||||
|
||||
_, matcher, result = make_template(knowledge_base, after_remix, atom)
|
||||
session().annotate("Tx: {}".format(after_remix))
|
||||
session().annotate("Mx: {}".format(matcher))
|
||||
session().annotate("Rx: {}".format(result))
|
||||
session().annotate("Sx: {}".format(start_bounds))
|
||||
session().annotate("Ex: {}".format(end_bounds))
|
||||
|
||||
|
||||
assert(len(after_remix) + len(start_bounds) + len(end_bounds) == len(tokens))
|
||||
session().annotate( " +-> {}".format(after_remix))
|
||||
subquery_type = knowledge_evaluation.get_subquery_type(knowledge_base.knowledge, atom)
|
||||
session().annotate(r" \-> <{}>".format(subquery_type))
|
||||
|
||||
# Clean remaining tokens
|
||||
new_tokens = list(tokens)
|
||||
offset = len(start_bounds)
|
||||
for _ in range(len(remix)):
|
||||
new_tokens.pop(offset)
|
||||
|
||||
# TODO: Get a specific types for... types
|
||||
new_tokens.insert(offset, (subquery_type, remix))
|
||||
tokens = new_tokens
|
||||
|
||||
resolved_parsed = replace_position(resolved_parsed, position, offset)
|
||||
session().annotate("RP: {}".format(resolved_parsed))
|
||||
session().annotate("AT: {}".format(atom))
|
||||
session().annotate("#########")
|
||||
|
||||
|
||||
tokens, matcher, result = make_template(knowledge_base, tokens, resolved_parsed)
|
||||
session().annotate("T: {}".format(tokens))
|
||||
session().annotate("M: {}".format(matcher))
|
||||
session().annotate("R: {}".format(result))
|
||||
session().annotate("---")
|
||||
yield tokens, matcher, result
|
||||
|
||||
|
||||
def apply_remix(tokens, remix):
|
||||
rebuilt = []
|
||||
for i in remix:
|
||||
if isinstance(i, int):
|
||||
if i >= len(tokens):
|
||||
return None
|
||||
rebuilt.append(tokens[i])
|
||||
else:
|
||||
assert(isinstance(i, str))
|
||||
rebuilt.append(i)
|
||||
return rebuilt
|
||||
|
||||
|
||||
def build_remix_matrix(knowledge_base, tokens, atom, similar):
|
||||
tokens = list(tokens)
|
||||
with session().log("Remix matrix for {} - {}".format(tokens, atom)):
|
||||
tokens, matcher, result = make_template(knowledge_base, tokens, atom)
|
||||
similar_matcher, similar_result, similar_result_resolved, _, _ = similar
|
||||
|
||||
start_bounds, end_bounds = find_bounds(knowledge_base, matcher, similar_matcher)
|
||||
|
||||
for i, element in (end_bounds + start_bounds[::-1]):
|
||||
matcher.pop(i)
|
||||
tokens.pop(i)
|
||||
|
||||
possible_remixes = get_possible_remixes(knowledge_base, matcher, similar_matcher)
|
||||
session().annotate("Possible remixes: {}".format(possible_remixes))
|
||||
if len(possible_remixes) < 1:
|
||||
return None
|
||||
|
||||
chosen_remix = possible_remixes[0]
|
||||
|
||||
return chosen_remix, (start_bounds, end_bounds)
|
||||
|
||||
|
||||
def get_possible_remixes(knowledge_base, matcher, similar_matcher):
|
||||
|
||||
matrix = []
|
||||
with session().log("Possible remixes from matcher: {}".format(matcher)):
|
||||
for element in matcher:
|
||||
with session().log("Element `{}`".format(element)):
|
||||
session().annotate("Similar `{}`".format(similar_matcher))
|
||||
if element in similar_matcher or isinstance(element, dict):
|
||||
if isinstance(element, dict):
|
||||
indexes = all_matching_indexes(knowledge_base, similar_matcher, element)
|
||||
session().annotate("Dict element matching: {}".format(indexes))
|
||||
else:
|
||||
indexes = all_indexes(similar_matcher, element)
|
||||
session().annotate("* element matching: {}".format(indexes))
|
||||
matrix.append(indexes)
|
||||
else:
|
||||
session().annotate("`else` element matching: [element]")
|
||||
matrix.append([element])
|
||||
|
||||
# TODO: do some scoring to find the most "interesting combination"
|
||||
return [list(x) for x in list(zip(*matrix))]
|
||||
|
||||
|
||||
def all_indexes(collection, element):
|
||||
indexes = []
|
||||
base = 0
|
||||
|
||||
for _ in range(collection.count(element)):
|
||||
i = collection.index(element, base)
|
||||
base = i + 1
|
||||
indexes.append(i)
|
||||
|
||||
return indexes
|
||||
|
||||
|
||||
def all_matching_indexes(knowledge_base, collection, element):
|
||||
indexes = []
|
||||
|
||||
with session().log('Matching “{}”'.format(element)):
|
||||
assert("groups" in element)
|
||||
element = element["groups"]
|
||||
for i, instance in enumerate(collection):
|
||||
session().log('Checking “{}”'.format(instance))
|
||||
|
||||
if isinstance(instance, dict):
|
||||
instance = instance["groups"]
|
||||
elif instance in knowledge_base.knowledge:
|
||||
session().log('Knowledge about “{}”: ”{}”'.format(instance, knowledge_base.knowledge[instance]))
|
||||
|
||||
if "groups" not in knowledge_base.knowledge[instance]:
|
||||
# This means that is only known as token
|
||||
# so we should try to avoid using it
|
||||
continue
|
||||
|
||||
instance = knowledge_base.knowledge[instance]["groups"]
|
||||
|
||||
intersection = set(instance) & set(element)
|
||||
if (len(intersection) > 0 or (0 == len(instance) == len(element))):
|
||||
indexes.append((i, intersection))
|
||||
|
||||
return [x[0] for x in sorted(indexes, key=lambda x: len(x[1]), reverse=True)]
|
||||
|
||||
|
||||
def element_matches_groups(knowledge, element: Dict, groups):
|
||||
with session().log("Checking if e “{}” matches groups “{}”".format(element, groups)):
|
||||
if isinstance(groups, str) and groups in knowledge:
|
||||
return len(knowledge[groups].get("groups", set()) & element['groups']) > 0
|
||||
elif isinstance(groups, dict):
|
||||
return len(element.get("groups", set()) & element['groups']) > 0
|
||||
return False
|
||||
|
||||
|
||||
def find_bounds(knowledge, matcher, similar_matcher):
|
||||
start_bounds = []
|
||||
for i, element in enumerate(matcher):
|
||||
if element in similar_matcher:
|
||||
break
|
||||
else:
|
||||
start_bounds.append((i, element))
|
||||
|
||||
end_bounds = []
|
||||
for i, element in enumerate(matcher[::-1]):
|
||||
in_similar = False
|
||||
if isinstance(element, str):
|
||||
in_similar = element in similar_matcher
|
||||
elif isinstance(element, dict):
|
||||
in_similar = any(map(lambda groups: element_matches_groups(knowledge.knowledge,
|
||||
element, groups),
|
||||
similar_matcher))
|
||||
|
||||
if in_similar:
|
||||
break
|
||||
else:
|
||||
end_bounds.append((len(matcher) - (i + 1), element))
|
||||
|
||||
return start_bounds, end_bounds
|
||||
|
||||
|
||||
def get_similar_tree(knowledge_base, atom, tokens):
|
||||
possibilities = []
|
||||
|
||||
# Find matching possibilities
|
||||
for entry, tree in knowledge_base.trained:
|
||||
if not is_bottom_level(tree):
|
||||
continue
|
||||
if tree[0] == atom[0]:
|
||||
possibilities.append((entry, tree))
|
||||
|
||||
# Sort by more matching elements
|
||||
sorted_possibilities = []
|
||||
for (raw, possibility) in possibilities:
|
||||
resolved = []
|
||||
for element in atom:
|
||||
if isinstance(element, str):
|
||||
resolved.append(element)
|
||||
else:
|
||||
resolved.append(knowledge_evaluation.resolve(
|
||||
knowledge_base.knowledge,
|
||||
element,
|
||||
raw))
|
||||
|
||||
# TODO: Probably should take into account the categories of the elements in the "intake" ([0]) element
|
||||
atom_score = sum([resolved[i] == atom[i]
|
||||
for i
|
||||
in range(min(len(resolved),
|
||||
len(atom)))])
|
||||
token_score = sum([similar_token in tokens
|
||||
for similar_token
|
||||
in raw])
|
||||
|
||||
sorted_possibilities.append((raw, possibility, resolved, atom_score, token_score))
|
||||
|
||||
sorted_possibilities = sorted(sorted_possibilities, key=lambda p: p[3] * 100 + p[4], reverse=True)
|
||||
if len(sorted_possibilities) < 1:
|
||||
return []
|
||||
|
||||
for i, possibility in enumerate(sorted_possibilities):
|
||||
similar_matcher, similar_result, similar_result_resolved, _atom_score, _token_score = possibility
|
||||
with session().log("Like {}".format(similar_matcher)):
|
||||
session().annotate('AST: {}'.format(similar_result))
|
||||
session().annotate('Results on: {}'.format(similar_result_resolved))
|
||||
session().annotate('Atom score: {}'.format(_atom_score))
|
||||
session().annotate('Token score: {}'.format(_token_score))
|
||||
|
||||
return sorted_possibilities
|
||||
|
||||
|
||||
# TODO: unroll this mess
|
||||
def get_matching(sample, other):
|
||||
l = len(sample[0])
|
||||
other = list(filter(lambda x: len(x[0]) == l, other))
|
||||
for i in range(l):
|
||||
if len(other) == 0:
|
||||
return []
|
||||
|
||||
if isinstance(sample[0][i], dict): # Dictionaries are compared by groups
|
||||
other = list(filter(lambda x: isinstance(x[0][i], dict) and
|
||||
len(x[0][i]['groups'] & sample[0][i]['groups']) > 0,
|
||||
other))
|
||||
|
||||
elif isinstance(sample[0][i], tuple): # Tuples are compared by types [0]
|
||||
other = list(filter(lambda x: isinstance(x[0][i], tuple) and
|
||||
x[0][i][0] == sample[0][i][0],
|
||||
other))
|
||||
|
||||
matching = []
|
||||
for x in range(l): # Generate the combination of this and other(s) matcher
|
||||
first_sample_data = sample[0][x]
|
||||
if isinstance(first_sample_data, str):
|
||||
matching.append(first_sample_data)
|
||||
elif isinstance(first_sample_data, tuple):
|
||||
matching.append(first_sample_data)
|
||||
else:
|
||||
this_groups = sample[0][x]['groups']
|
||||
if len(other) > 0:
|
||||
other_groups = reduce(lambda a, b: a & b,
|
||||
map(lambda y: y[0][x]['groups'],
|
||||
other))
|
||||
this_groups = this_groups & other_groups
|
||||
|
||||
matching.append({'groups': this_groups})
|
||||
return matching
|
||||
|
||||
|
||||
def reverse_remix(tree_section, remix):
|
||||
result_section = []
|
||||
offset = 0
|
||||
for origin in remix:
|
||||
if isinstance(origin, int):
|
||||
if (origin + offset) >= len(tree_section):
|
||||
return None
|
||||
|
||||
result_section.append(copy.deepcopy(tree_section[origin + offset]))
|
||||
else:
|
||||
assert(isinstance(origin, str))
|
||||
offset += 1
|
||||
return result_section + tree_section[len(remix):]
|
||||
|
||||
|
||||
def get_fit(knowledge, tokens, remaining_recursions=parameters.MAX_RECURSIONS):
|
||||
results = []
|
||||
for matcher, ast in knowledge.trained:
|
||||
with session().log("{} <- {}".format(matcher, tokens)):
|
||||
result = match_fit(knowledge, tokens, matcher, ast,
|
||||
remaining_recursions)
|
||||
|
||||
if result is not None:
|
||||
with session().log("Result: {}".format(result)):
|
||||
results.append(result)
|
||||
|
||||
if len(results) > 0:
|
||||
return results[0]
|
||||
|
||||
|
||||
def is_definite_minisegment(minisegment):
|
||||
return isinstance(minisegment, str) or isinstance(minisegment, dict)
|
||||
|
||||
|
||||
def match_token(knowledge, next_token, minisegment):
|
||||
if isinstance(minisegment, dict):
|
||||
return knowledge_evaluation.can_be_used_in_place(knowledge, next_token, minisegment)
|
||||
elif isinstance(minisegment, str):
|
||||
# TODO: check if the two elements can be used in each other place
|
||||
return next_token == minisegment
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def resolve_fit(knowledge, fit, remaining_recursions):
|
||||
fitted = []
|
||||
for element in fit:
|
||||
if is_definite_minisegment(element):
|
||||
fitted.append(element)
|
||||
else:
|
||||
with session().log("Resolving fit of `{}`".format(element)):
|
||||
((result_type, remixer), tokens) = element
|
||||
remixed_tokens = reverse_remix(tokens, remixer)
|
||||
if remixed_tokens is None:
|
||||
return None
|
||||
|
||||
minifit = get_fit(knowledge, remixed_tokens, remaining_recursions - 1)
|
||||
if minifit is None:
|
||||
return None
|
||||
|
||||
minitokens, miniast = minifit
|
||||
session().annotate(" AST | {}".format(miniast))
|
||||
subproperty = knowledge_evaluation.resolve(knowledge.knowledge, minitokens, miniast)
|
||||
fitted.append(subproperty)
|
||||
|
||||
return fitted
|
||||
|
||||
|
||||
def match_fit(knowledge, tokens, matcher, ast, remaining_recursions):
|
||||
segment_possibilities = [([], tokens)] # Matched tokens, remaining tokens
|
||||
indent = ' ' * (parameters.MAX_RECURSIONS - remaining_recursions)
|
||||
session().annotate(indent + 'T> {}'.format(tokens))
|
||||
session().annotate(indent + 'M> {}'.format(matcher))
|
||||
for minisegment in matcher:
|
||||
with session().log("Minisegment `{}`".format(minisegment)):
|
||||
possibilities_after_round = []
|
||||
for matched_tokens, remaining_tokens in segment_possibilities:
|
||||
if len(remaining_tokens) < 1:
|
||||
continue
|
||||
|
||||
session().annotate(indent + "RT {}".format(remaining_tokens[0]))
|
||||
session().annotate(indent + "DEF {}".format(is_definite_minisegment(minisegment)))
|
||||
if is_definite_minisegment(minisegment):
|
||||
# What if not match -----<
|
||||
if match_token(knowledge, remaining_tokens[0], minisegment):
|
||||
possibilities_after_round.append((
|
||||
matched_tokens + [remaining_tokens[0]],
|
||||
remaining_tokens[1:]
|
||||
))
|
||||
else:
|
||||
# What if not match!!!!!!-----<
|
||||
# TODO: optimize this with a look ahead
|
||||
for i in range(1, len(tokens)):
|
||||
possibilities_after_round.append((
|
||||
matched_tokens + [(minisegment, remaining_tokens[:i])],
|
||||
remaining_tokens[i:]
|
||||
))
|
||||
session().annotate(indent + "## PA {}".format(possibilities_after_round))
|
||||
else:
|
||||
segment_possibilities = possibilities_after_round
|
||||
for possibility in segment_possibilities:
|
||||
with session().log("Possibility: `{}`".format(possibility)):
|
||||
pass
|
||||
if len(segment_possibilities) < 1:
|
||||
with session().log("NO POSSIBLE"):
|
||||
pass
|
||||
|
||||
fully_matched_segments = [(matched, remaining)
|
||||
for (matched, remaining)
|
||||
in segment_possibilities
|
||||
if len(remaining) == 0]
|
||||
|
||||
resolved_fits = []
|
||||
with session().log("Full matches"):
|
||||
for fit, _ in fully_matched_segments:
|
||||
with session().log(fit): # REMIXES HAVE TO BE APPLIED BEFORE!!!
|
||||
pass
|
||||
|
||||
with session().log("Resolutions"):
|
||||
for fit, _ in fully_matched_segments:
|
||||
with session().log("Resolving {}".format(fit)): # REMIXES HAVE TO BE APPLIED BEFORE!!!
|
||||
resolved_fit = resolve_fit(knowledge, fit, remaining_recursions)
|
||||
if resolved_fit is not None:
|
||||
resolved_fits.append(resolved_fit)
|
||||
else:
|
||||
session().annotate("Not resolved")
|
||||
|
||||
if len(resolved_fits) == 0:
|
||||
return None
|
||||
|
||||
return resolved_fits[0], ast
|
16
naive-nlu/tree_nlu/layers/parsing_layer.py
Normal file
16
naive-nlu/tree_nlu/layers/parsing_layer.py
Normal file
@ -0,0 +1,16 @@
|
||||
from . import parsing
|
||||
|
||||
class ParsingLayer:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def integrate(self, knowledge_base, example):
|
||||
yield from parsing.integrate_language(knowledge_base, example)
|
||||
|
||||
def train(self, knowledge_base, example):
|
||||
assert False
|
||||
|
||||
def process(self, knowledge_base, input):
|
||||
fit = parsing.get_fit(knowledge_base, input)
|
||||
if fit is not None:
|
||||
yield fit
|
186
naive-nlu/tree_nlu/layers/tokenization.py
Normal file
186
naive-nlu/tree_nlu/layers/tokenization.py
Normal file
@ -0,0 +1,186 @@
|
||||
from ..session.org_mode import global_session as session
|
||||
from ..atoms import Atom, a, is_atom
|
||||
|
||||
def lookahead_for_tokens_or_strucutral_elements(knowledge_base, remaining):
|
||||
for se in knowledge_base.structural_elements:
|
||||
found_position = remaining.find(se)
|
||||
found = found_position >= 0
|
||||
session().annotate('Looking for structure with “{}”, found? {}'.format(se, found))
|
||||
if found:
|
||||
return [
|
||||
(remaining[:found_position], se, remaining[found_position + len(se):])
|
||||
]
|
||||
|
||||
for token in knowledge_base.knowledge.keys():
|
||||
found_position = remaining.find(token)
|
||||
found = found_position >= 0
|
||||
session().annotate('Looking for token “{}”, found? {}'.format(token, found))
|
||||
if found:
|
||||
return [
|
||||
(remaining[:found_position], token, remaining[found_position + len(token):])
|
||||
]
|
||||
|
||||
return None
|
||||
|
||||
|
||||
|
||||
def to_tokens(knowledge_base, text, precedent=None):
|
||||
if len(text) == 0:
|
||||
session().annotate("No text remaining")
|
||||
yield ['']
|
||||
return
|
||||
|
||||
with session().log("Tokenizing {}".format(text)):
|
||||
for option in knowledge_base.expected_token_after_precedent(precedent):
|
||||
with session().log("Next: “{}”".format(option)):
|
||||
with session().log("Matching “{}” on “{}”".format(option, text)):
|
||||
for token_match in tokenization_match(option, text, knowledge_base):
|
||||
if token_match is None:
|
||||
session().annotate("No match")
|
||||
|
||||
match, remaining = token_match
|
||||
if len(remaining) == len(text):
|
||||
raise Exception('No text consumed in match')
|
||||
|
||||
session().annotate('Match: “{}”'.format(match))
|
||||
with session().log('Remaining “{}”'.format(remaining)):
|
||||
for sublevel in to_tokens(knowledge_base, remaining, match):
|
||||
candidate = list(filter(lambda x: x != '', [match] + sublevel))
|
||||
session().annotate('Yielding candidate “{}”'.format(candidate))
|
||||
yield candidate
|
||||
|
||||
|
||||
def tokenization_match(element, text, knowledge_base):
|
||||
# Constant/structural string matching
|
||||
if isinstance(element, str):
|
||||
if text.find(element) == 0:
|
||||
# This match comes from a structuring element
|
||||
# It doesn't appear on the tokenization
|
||||
# So we should return it as an empty string
|
||||
yield ('', text[len(element):])
|
||||
return
|
||||
else:
|
||||
# No match found
|
||||
return
|
||||
|
||||
elif is_atom(element, 'token'):
|
||||
yield from match_single_token(text, knowledge_base)
|
||||
return
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
def match_single_token(text, knowledge_base):
|
||||
found_token = False
|
||||
for token in knowledge_base.knowledge.keys():
|
||||
if text.find(token) == 0:
|
||||
yield token, text[len(token):]
|
||||
found_token = True
|
||||
|
||||
if found_token:
|
||||
return
|
||||
|
||||
session().annotate('No token found at the start of ”{}”'.format(text))
|
||||
session().annotate('using structural elements to infer it')
|
||||
# TODO: review this when multiple structural elements are available
|
||||
for se in knowledge_base.structural_elements:
|
||||
session().annotate('Looking for se “{}” in “{}”'.format(se, text))
|
||||
position = text.find(se, 0)
|
||||
found = position > 0 # 0 is not considered a valid position for this kind of split
|
||||
if found:
|
||||
session().annotate('Found ”{}”, inferring “{}”'.format(se, text[:position]))
|
||||
yield text[:position], text[position:]
|
||||
|
||||
session().annotate('No structural element or token found, inferring only token remaining')
|
||||
yield text, ''
|
||||
|
||||
# Using other tokens for cutoff
|
||||
for token in knowledge_base.knowledge.keys():
|
||||
session().annotate('Looking for token “{}” in “{}”'.format(token, text))
|
||||
position = text.find(token)
|
||||
found = position >= 0
|
||||
if found:
|
||||
session().annotate('Found ”{}”, in position ”{}”'.format(token, position))
|
||||
yield text[:position], text[position:]
|
||||
|
||||
|
||||
def integrate_tokenization(knowledge_base, example):
|
||||
text = example['text']
|
||||
tokens = example['tokens']
|
||||
meaning = example.get('meaning')
|
||||
|
||||
return integrate_token_to_text_matching(knowledge_base, text, tokens)
|
||||
|
||||
|
||||
def integrate_token_to_text_matching(knowledge_base, text, tokens):
|
||||
texts = [text]
|
||||
|
||||
# Convert to tokens
|
||||
for token_id, token in enumerate(tokens):
|
||||
# Look for token in texts
|
||||
for i, text in enumerate(texts):
|
||||
if isinstance(text, int):
|
||||
continue
|
||||
|
||||
if token in text:
|
||||
before, after = text.split(token, maxsplit=1)
|
||||
texts = (texts[:i] + [before]
|
||||
+ [a('token')]
|
||||
+ [after] + texts[i + 1:])
|
||||
break
|
||||
else:
|
||||
raise Exception('Token not found')
|
||||
|
||||
# Remove leftovers from splits
|
||||
texts = list(filter(lambda x: x != '', texts))
|
||||
session().log("Tokenized as {} over {}".format(texts, tokens))
|
||||
|
||||
for i, element in enumerate(texts[:-1]):
|
||||
learn_token_pair(element, texts[i + 1], knowledge_base)
|
||||
|
||||
return tokens
|
||||
|
||||
def learn_token_pair(precedent, consequent, knowledge_base):
|
||||
knowledge_base.add_token_pair(precedent, consequent)
|
||||
|
||||
|
||||
def pick_one_tokenization(options, knowledge_base):
|
||||
'''
|
||||
Heuristic function to pick the most probable tokenization.
|
||||
|
||||
Just pick the one with more results.
|
||||
'''
|
||||
options = list(options)
|
||||
with session().log("Picking among: {} options".format(len(options))):
|
||||
session().log("Options: \n{}".format('\n'.join(map(str, options))))
|
||||
return pick_by_score(options,
|
||||
[
|
||||
# By number of splits without structuring elements
|
||||
lambda tokenization: sum(map(
|
||||
lambda split: sum(map(
|
||||
lambda se: se in split, knowledge_base.structural_elements
|
||||
)), tokenization)),
|
||||
|
||||
# By number of unknown tokens
|
||||
lambda tokenization: len(list(filter(lambda token:
|
||||
(token not in knowledge_base.knowledge.keys()) and
|
||||
(token not in knowledge_base.structural_elements),
|
||||
tokenization))),
|
||||
|
||||
# By number of splits
|
||||
lambda tokenization: -len(tokenization),
|
||||
])
|
||||
|
||||
def pick_by_score(options, heuristics):
|
||||
for heuristic in heuristics:
|
||||
assert(len(options) > 0)
|
||||
options = list(map(lambda opt: (heuristic(opt), opt), options))
|
||||
sorted_options = sorted(options, key=lambda x: x[0], reverse=False)
|
||||
|
||||
heuristic_cutoff = sorted_options[0][0]
|
||||
session().annotate(sorted_options)
|
||||
pass_heuristic = [opt for (score, opt) in sorted_options if score <= heuristic_cutoff]
|
||||
options = pass_heuristic
|
||||
|
||||
session().log("{} finalists: \n{}".format(len(options), '\n'.join(map(str, options))))
|
||||
return options[0]
|
||||
|
90
naive-nlu/tree_nlu/layers/tokenization_layer.py
Normal file
90
naive-nlu/tree_nlu/layers/tokenization_layer.py
Normal file
@ -0,0 +1,90 @@
|
||||
from ..session.org_mode import global_session as session
|
||||
from ..atoms import Atom
|
||||
from . import tokenization
|
||||
import random
|
||||
import copy
|
||||
|
||||
def randomized_weighted_list(elements):
|
||||
# Randomized
|
||||
randomized = list(elements)
|
||||
random.shuffle(randomized)
|
||||
|
||||
# And return only once
|
||||
already_returned = set()
|
||||
for e in randomized:
|
||||
if e in already_returned:
|
||||
continue
|
||||
|
||||
yield e
|
||||
already_returned.add(e)
|
||||
|
||||
class TokenizationLayer:
|
||||
def __init__(self, knowledge_base):
|
||||
self.structural_elements = set()
|
||||
self.token_chains = {}
|
||||
self.tokens = set()
|
||||
self.knowledge_base = knowledge_base
|
||||
self.knowledge = knowledge_base.knowledge
|
||||
|
||||
def integrate(self, knowledge_base, data):
|
||||
assert knowledge_base is self.knowledge_base
|
||||
|
||||
assert 'text' in data
|
||||
tokens = self.tokenize(data['text'])
|
||||
data_with_row = copy.copy(data)
|
||||
data_with_row['tokens'] = tokens
|
||||
yield data_with_row
|
||||
|
||||
# with session().log("Tokenize: {}".format(data['text'])):
|
||||
# for tokens in tokenization.to_tokens(self, data['text']):
|
||||
# data_with_row = copy.copy(data)
|
||||
# data_with_row['tokens'] = tokens
|
||||
# yield data_with_row
|
||||
|
||||
def process(self, knowledge_base, row):
|
||||
yield self.tokenize(row)
|
||||
|
||||
|
||||
def tokenize(self, row, return_one=True):
|
||||
row = row.lower()
|
||||
with session().log("Tokenize: {}".format(row)):
|
||||
options = list(tokenization.to_tokens(self, row))
|
||||
session().log("Results:\n{}".format('\n'.join(map(str, options))))
|
||||
|
||||
if return_one:
|
||||
chosen = tokenization.pick_one_tokenization(options, self)
|
||||
session().log("Chosen: “{}”".format(chosen))
|
||||
self.train({'text': row, 'tokens': chosen})
|
||||
return chosen
|
||||
return options
|
||||
|
||||
## Tokenization
|
||||
def add_token_pair(self, precedent, consequent):
|
||||
self.add_token(precedent)
|
||||
self.add_token(consequent)
|
||||
|
||||
if precedent not in self.token_chains:
|
||||
self.token_chains[precedent] = []
|
||||
self.token_chains[precedent].append(consequent)
|
||||
|
||||
def add_token(self, token):
|
||||
self.tokens.add(token)
|
||||
if (not isinstance(token, Atom)) and (token not in self.structural_elements):
|
||||
session().annotate('Found new structural element “{}”'.format(token))
|
||||
self.structural_elements.add(token)
|
||||
|
||||
def expected_token_after_precedent(self, precedent=None):
|
||||
if precedent not in self.token_chains: # If there's no known precedent, just return all tokens
|
||||
return randomized_weighted_list(self.tokens)
|
||||
|
||||
return randomized_weighted_list(self.token_chains[precedent])
|
||||
|
||||
def train(self, example):
|
||||
with session().log('Training tokenizer'):
|
||||
session().annotate("Example: {}".format(example))
|
||||
tokens = tokenization.integrate_tokenization(self, example)
|
||||
|
||||
# Integrate knowledge of concept
|
||||
for token in tokens:
|
||||
if not token in self.knowledge:
|
||||
self.knowledge[token] = {}
|
@ -1,384 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
from . import knowledge_evaluation
|
||||
|
||||
from . import depth_meter
|
||||
import logging
|
||||
import re
|
||||
import copy
|
||||
|
||||
from functools import reduce
|
||||
from typing import List
|
||||
from .modifiable_property import ModifiableProperty
|
||||
from . import parameters
|
||||
|
||||
# TODO: more flexible tokenization
|
||||
def to_tokens(text):
|
||||
return re.findall(r'(\w+|[^\s])', text)
|
||||
|
||||
|
||||
def make_template(knowledge_base, tokens, parsed):
|
||||
matcher = list(tokens)
|
||||
template = list(parsed)
|
||||
for i in range(len(matcher)):
|
||||
word = matcher[i]
|
||||
if word in template:
|
||||
template[template.index(word)] = i
|
||||
matcher[i] = {
|
||||
'groups': set(knowledge_base.knowledge[word]['groups'])
|
||||
}
|
||||
return tokens, matcher, template
|
||||
|
||||
|
||||
def is_bottom_level(tree):
|
||||
for element in tree:
|
||||
if isinstance(element, list) or isinstance(element, tuple):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def get_lower_levels(parsed):
|
||||
lower = []
|
||||
def aux(subtree, path):
|
||||
nonlocal lower
|
||||
deeper = len(path) == 0
|
||||
for i, element in enumerate(subtree):
|
||||
if isinstance(element, list) or isinstance(element, tuple):
|
||||
aux(element, path + (i,))
|
||||
deeper = True
|
||||
|
||||
if not deeper:
|
||||
lower.append((path, subtree))
|
||||
|
||||
aux(parsed, path=())
|
||||
return lower
|
||||
|
||||
|
||||
# TODO: probably optimize this, it creates lots of unnecessary tuples
|
||||
def replace_position(tree, position, new_element):
|
||||
|
||||
def aux(current_tree, remaining_route):
|
||||
if len(remaining_route) == 0:
|
||||
return new_element
|
||||
|
||||
else:
|
||||
step = remaining_route[0]
|
||||
return (
|
||||
tree[:step]
|
||||
+ (aux(tree[step], remaining_route[1:]),)
|
||||
+ tree[step + 2:]
|
||||
)
|
||||
|
||||
return aux(tree, position)
|
||||
|
||||
|
||||
def integrate_language(knowledge_base, example):
|
||||
text = example["text"].lower()
|
||||
parsed = example["parsed"]
|
||||
|
||||
resolved_parsed = copy.deepcopy(parsed)
|
||||
tokens = to_tokens(text)
|
||||
|
||||
while True:
|
||||
logging.debug("P: {}".format(resolved_parsed))
|
||||
lower_levels = get_lower_levels(resolved_parsed)
|
||||
logging.debug("Lower: {}".format(lower_levels))
|
||||
if len(lower_levels) == 0:
|
||||
break
|
||||
|
||||
for position, atom in lower_levels:
|
||||
logging.debug("\x1b[1mSelecting\x1b[0m: {}".format(atom))
|
||||
similar = get_similar_tree(knowledge_base, atom)
|
||||
remix, (start_bounds, end_bounds) = build_remix_matrix(knowledge_base, tokens, atom, similar)
|
||||
_, matcher, result = make_template(knowledge_base, tokens, atom)
|
||||
logging.debug("Tx: {}".format(tokens))
|
||||
logging.debug("Mx: {}".format(matcher))
|
||||
logging.debug("Rx: {}".format(result))
|
||||
logging.debug("Remix: {}".format(remix))
|
||||
|
||||
after_remix = apply_remix(tokens[len(start_bounds):-len(end_bounds)], remix)
|
||||
assert(len(after_remix) + len(start_bounds) + len(end_bounds) == len(tokens))
|
||||
logging.debug( " +-> {}".format(after_remix))
|
||||
subquery_type = knowledge_evaluation.get_subquery_type(knowledge_base.knowledge, atom)
|
||||
logging.debug(r" \-> <{}>".format(subquery_type))
|
||||
|
||||
# Clean remaining tokens
|
||||
new_tokens = list(tokens)
|
||||
offset = len(start_bounds)
|
||||
for _ in range(len(remix)):
|
||||
new_tokens.pop(offset)
|
||||
|
||||
# TODO: Get a specific types for... types
|
||||
new_tokens.insert(offset, (subquery_type, remix))
|
||||
tokens = new_tokens
|
||||
|
||||
resolved_parsed = replace_position(resolved_parsed, position, offset)
|
||||
logging.debug("#########")
|
||||
|
||||
|
||||
tokens, matcher, result = make_template(knowledge_base, tokens, resolved_parsed)
|
||||
logging.debug("T: {}".format(tokens))
|
||||
logging.debug("M: {}".format(matcher))
|
||||
logging.debug("R: {}".format(result))
|
||||
logging.debug("---")
|
||||
return tokens, matcher, result
|
||||
|
||||
|
||||
def apply_remix(tokens, remix):
|
||||
rebuilt = []
|
||||
for i in remix:
|
||||
rebuilt.append(tokens[i])
|
||||
return rebuilt
|
||||
|
||||
|
||||
def build_remix_matrix(knowledge_base, tokens, atom, similar):
|
||||
tokens = list(tokens)
|
||||
tokens, matcher, result = make_template(knowledge_base, tokens, atom)
|
||||
similar_matcher, similar_result, similar_result_resolved, _ = similar
|
||||
|
||||
start_bounds, end_bounds = find_bounds(matcher, similar_matcher)
|
||||
|
||||
for i, element in (end_bounds + start_bounds[::-1]):
|
||||
matcher.pop(i)
|
||||
tokens.pop(i)
|
||||
|
||||
possible_remixes = get_possible_remixes(knowledge_base, matcher, similar_matcher)
|
||||
chosen_remix = possible_remixes[0]
|
||||
|
||||
return chosen_remix, (start_bounds, end_bounds)
|
||||
|
||||
|
||||
def get_possible_remixes(knowledge_base, matcher, similar_matcher):
|
||||
|
||||
matrix = []
|
||||
for element in matcher:
|
||||
logging.debug("- {}".format(element))
|
||||
logging.debug("+ {}".format(similar_matcher))
|
||||
assert(element in similar_matcher or isinstance(element, dict))
|
||||
|
||||
if isinstance(element, dict):
|
||||
indexes = all_matching_indexes(knowledge_base, similar_matcher, element)
|
||||
else:
|
||||
indexes = all_indexes(similar_matcher, element)
|
||||
matrix.append(indexes)
|
||||
|
||||
# TODO: do some scoring to find the most "interesting combination"
|
||||
return [list(x) for x in list(zip(*matrix))]
|
||||
|
||||
|
||||
def all_indexes(collection, element):
|
||||
indexes = []
|
||||
base = 0
|
||||
|
||||
for _ in range(collection.count(element)):
|
||||
i = collection.index(element, base)
|
||||
base = i + 1
|
||||
indexes.append(i)
|
||||
|
||||
return indexes
|
||||
|
||||
|
||||
def all_matching_indexes(knowledge_base, collection, element):
|
||||
indexes = []
|
||||
|
||||
assert("groups" in element)
|
||||
element = element["groups"]
|
||||
for i, instance in enumerate(collection):
|
||||
if isinstance(instance, dict):
|
||||
instance = instance["groups"]
|
||||
elif instance in knowledge_base.knowledge:
|
||||
instance = knowledge_base.knowledge[instance]["groups"]
|
||||
|
||||
intersection = set(instance) & set(element)
|
||||
if len(intersection) > 0:
|
||||
indexes.append((i, intersection))
|
||||
|
||||
return [x[0] for x in sorted(indexes, key=lambda x: len(x[1]), reverse=True)]
|
||||
|
||||
|
||||
def find_bounds(matcher, similar_matcher):
|
||||
start_bounds = []
|
||||
for i, element in enumerate(matcher):
|
||||
if element in similar_matcher:
|
||||
break
|
||||
else:
|
||||
start_bounds.append((i, element))
|
||||
|
||||
end_bounds = []
|
||||
for i, element in enumerate(matcher[::-1]):
|
||||
if element in similar_matcher:
|
||||
break
|
||||
else:
|
||||
end_bounds.append((len(matcher) - (i + 1), element))
|
||||
|
||||
return start_bounds, end_bounds
|
||||
|
||||
|
||||
def get_similar_tree(knowledge_base, atom):
|
||||
possibilities = []
|
||||
|
||||
# Find matching possibilities
|
||||
for entry, tree in knowledge_base.trained:
|
||||
if not is_bottom_level(tree):
|
||||
continue
|
||||
if tree[0] == atom[0]:
|
||||
possibilities.append((entry, tree))
|
||||
|
||||
# Sort by more matching elements
|
||||
sorted_possibilities = []
|
||||
for (raw, possibility) in possibilities:
|
||||
resolved = []
|
||||
for element in atom:
|
||||
if isinstance(element, str):
|
||||
resolved.append(element)
|
||||
else:
|
||||
resolved.append(knowledge_evaluation.resolve(
|
||||
knowledge_base.knowledge,
|
||||
element,
|
||||
raw))
|
||||
|
||||
# TODO: Probably should take into account the categories of the elements in the "intake" ([0]) element
|
||||
score = sum([resolved[i] == atom[i]
|
||||
for i
|
||||
in range(min(len(resolved),
|
||||
len(atom)))])
|
||||
sorted_possibilities.append((raw, possibility, resolved, score))
|
||||
sorted_possibilities = sorted(sorted_possibilities, key=lambda p: p[3], reverse=True)
|
||||
if len(sorted_possibilities) < 1:
|
||||
return None
|
||||
|
||||
return sorted_possibilities[0]
|
||||
|
||||
|
||||
# TODO: unroll this mess
|
||||
def get_matching(sample, other):
|
||||
l = len(sample[0])
|
||||
other = list(filter(lambda x: len(x[0]) == l, other))
|
||||
for i in range(l):
|
||||
if len(other) == 0:
|
||||
return []
|
||||
|
||||
if isinstance(sample[0][i], dict): # Dictionaries are compared by groups
|
||||
other = list(filter(lambda x: isinstance(x[0][i], dict) and
|
||||
len(x[0][i]['groups'] & sample[0][i]['groups']) > 0,
|
||||
other))
|
||||
|
||||
elif isinstance(sample[0][i], tuple): # Tuples are compared by types [0]
|
||||
other = list(filter(lambda x: isinstance(x[0][i], tuple) and
|
||||
x[0][i][0] == sample[0][i][0],
|
||||
other))
|
||||
|
||||
return [sample[0][x] if isinstance(sample[0][x], str)
|
||||
else
|
||||
sample[0][x] if isinstance(sample[0][x], tuple)
|
||||
else {'groups': sample[0][x]['groups'] & reduce(lambda a, b: a & b,
|
||||
map(lambda y: y[0][x]['groups'],
|
||||
other))}
|
||||
for x
|
||||
in range(l)]
|
||||
|
||||
|
||||
def reprocess_language_knowledge(knowledge_base, examples):
|
||||
examples = knowledge_base.examples + examples
|
||||
|
||||
pattern_examples = []
|
||||
for i, sample in enumerate(examples):
|
||||
other = examples[:i] + examples[i + 1:]
|
||||
match = get_matching(sample, other)
|
||||
if len(match) > 0:
|
||||
sample = (match, sample[1],)
|
||||
pattern_examples.append(sample)
|
||||
|
||||
return pattern_examples
|
||||
|
||||
|
||||
def reverse_remix(tree_section, remix):
|
||||
result_section = []
|
||||
for origin in remix:
|
||||
result_section.append(copy.deepcopy(tree_section[origin]))
|
||||
return result_section + tree_section[len(remix):]
|
||||
|
||||
|
||||
def get_fit(knowledge, tokens, remaining_recursions=parameters.MAX_RECURSIONS):
|
||||
for matcher, ast in knowledge.trained:
|
||||
result = match_fit(knowledge, tokens, matcher, ast,
|
||||
remaining_recursions)
|
||||
if result is not None:
|
||||
return result
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def is_definite_minisegment(minisegment):
|
||||
return isinstance(minisegment, str) or isinstance(minisegment, dict)
|
||||
|
||||
|
||||
def match_token(knowledge, next_token, minisegment):
|
||||
if isinstance(minisegment, dict):
|
||||
# TODO: check if the dictionary matches the values
|
||||
return True
|
||||
elif isinstance(minisegment, str):
|
||||
# TODO: check if the two elements can be used in each other place
|
||||
return next_token == minisegment
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def resolve_fit(knowledge, fit, remaining_recursions):
|
||||
fitted = []
|
||||
for element in fit:
|
||||
if is_definite_minisegment(element):
|
||||
fitted.append(element)
|
||||
else:
|
||||
((result_type, remixer), tokens) = element
|
||||
remixed_tokens = reverse_remix(tokens, remixer)
|
||||
minifit = get_fit(knowledge, remixed_tokens, remaining_recursions - 1)
|
||||
if minifit is None:
|
||||
return None
|
||||
|
||||
minitokens, miniast = minifit
|
||||
subproperty = knowledge_evaluation.resolve(knowledge.knowledge, minitokens, miniast)
|
||||
fitted.append(subproperty)
|
||||
|
||||
return fitted
|
||||
|
||||
|
||||
def match_fit(knowledge, tokens, matcher, ast, remaining_recursions):
|
||||
segment_possibilities = [([], tokens)] # Matched tokens, remaining tokens
|
||||
for minisegment in matcher:
|
||||
possibilities_after_round = []
|
||||
for matched_tokens, remaining_tokens in segment_possibilities:
|
||||
if len(remaining_tokens) < 1:
|
||||
continue
|
||||
|
||||
if is_definite_minisegment(minisegment):
|
||||
if match_token(knowledge, remaining_tokens[0], minisegment):
|
||||
possibilities_after_round.append((
|
||||
matched_tokens + [remaining_tokens[0]],
|
||||
remaining_tokens[1:]
|
||||
))
|
||||
else:
|
||||
# TODO: optimize this with a look ahead
|
||||
for i in range(1, len(tokens)):
|
||||
possibilities_after_round.append((
|
||||
matched_tokens + [(minisegment, remaining_tokens[:i])],
|
||||
remaining_tokens[i:]
|
||||
))
|
||||
else:
|
||||
segment_possibilities = possibilities_after_round
|
||||
|
||||
fully_matched_segments = [(matched, remaining)
|
||||
for (matched, remaining)
|
||||
in segment_possibilities
|
||||
if len(remaining) == 0]
|
||||
|
||||
resolved_fits = []
|
||||
for fit, _ in fully_matched_segments:
|
||||
resolved_fit = resolve_fit(knowledge, fit, remaining_recursions)
|
||||
if resolved_fit is not None:
|
||||
resolved_fits.append(resolved_fit)
|
||||
|
||||
if len(resolved_fits) == 0:
|
||||
return None
|
||||
|
||||
return resolved_fits[0], ast
|
79
naive-nlu/tree_nlu/session/org_mode.py
Normal file
79
naive-nlu/tree_nlu/session/org_mode.py
Normal file
@ -0,0 +1,79 @@
|
||||
import logging
|
||||
import datetime
|
||||
|
||||
SESSION = None
|
||||
|
||||
def __gen_session_name__():
|
||||
now = datetime.datetime.utcnow()
|
||||
return "treeNLU-session-{}.org".format(
|
||||
now.strftime("%y_%m_%d %H:%M:%S_%f"))
|
||||
|
||||
|
||||
def create_global_session(fname):
|
||||
global SESSION
|
||||
SESSION = OrgModeSession(fname)
|
||||
|
||||
|
||||
def global_session():
|
||||
if SESSION is None:
|
||||
session_name = __gen_session_name__()
|
||||
logging.warn("Session not created, saved on {}".format(session_name))
|
||||
create_global_session(session_name)
|
||||
|
||||
assert(SESSION is not None)
|
||||
return SESSION
|
||||
|
||||
|
||||
def get_header():
|
||||
now = datetime.datetime.utcnow()
|
||||
return ("# Ran on {}\n".format(
|
||||
now.strftime("%y/%m/%d %H:%M:%S.%f")))
|
||||
|
||||
class LevelContext:
|
||||
def __init__(self, increaser, decreaser):
|
||||
self.increaser = increaser
|
||||
self.decreaser = decreaser
|
||||
|
||||
def __enter__(self):
|
||||
self.increaser()
|
||||
|
||||
def __exit__(self, _type, _value, _traceback):
|
||||
self.decreaser()
|
||||
|
||||
|
||||
class OrgModeSession:
|
||||
def __init__(self, fname):
|
||||
self.f = open(fname, 'wt')
|
||||
self.level = 0
|
||||
self.dirty = False
|
||||
|
||||
self.f.write(get_header())
|
||||
|
||||
def annotate(self, annotation):
|
||||
if self.dirty:
|
||||
self.f.write("{indentation} {data}\n".format(
|
||||
indentation='*' * (self.level + 1),
|
||||
data="---"))
|
||||
self.dirty = False
|
||||
|
||||
self.f.write("{indentation} {data}\n".format(
|
||||
indentation=' ' * (self.level + 2 + 1),
|
||||
data=annotation))
|
||||
|
||||
def log(self, string):
|
||||
self.f.write("{indentation} {data}\n".format(
|
||||
indentation='*' * (self.level + 1),
|
||||
data=string))
|
||||
self.dirty = False
|
||||
|
||||
return LevelContext(self.inc_level, self.dec_level)
|
||||
|
||||
def inc_level(self):
|
||||
self.level += 1
|
||||
|
||||
def dec_level(self):
|
||||
self.level -= 1
|
||||
self.dirty = True
|
||||
|
||||
def close(self):
|
||||
self.f.close()
|
@ -1,157 +1,50 @@
|
||||
import json
|
||||
import traceback
|
||||
import logging
|
||||
from .session import org_mode
|
||||
|
||||
logging.getLogger().setLevel(logging.INFO)
|
||||
from .tests import tokenization
|
||||
from .tests import basic
|
||||
from .tests import gac_100
|
||||
from .tests import gac_extension
|
||||
|
||||
from .knowledge_base import KnowledgeBase
|
||||
from .modifiable_property import is_modifiable_property
|
||||
logging.getLogger().setLevel(logging.ERROR)
|
||||
|
||||
examples = [
|
||||
{
|
||||
"text": "icecream is cold",
|
||||
"parsed": ("exists-property-with-value", 'icecream', 'cold'),
|
||||
},
|
||||
{
|
||||
"text": "is icecream cold?",
|
||||
"parsed": ("question", ("exists-property-with-value", 'icecream', 'cold'))
|
||||
},
|
||||
{
|
||||
"text": "lava is dangerous",
|
||||
"parsed": ("exists-property-with-value", 'lava', 'dangerous')
|
||||
},
|
||||
{
|
||||
"text": "is lava dangerous?",
|
||||
"parsed": ("question", ("exists-property-with-value", 'lava', 'dangerous')),
|
||||
},
|
||||
{
|
||||
"text": "earth is a planet",
|
||||
"parsed": ("pertenence-to-group", 'earth', 'planet'),
|
||||
},
|
||||
{
|
||||
"text": "io is a moon",
|
||||
"parsed": ("pertenence-to-group", 'io', 'moon'),
|
||||
},
|
||||
{
|
||||
"text": "is earth a moon?",
|
||||
"parsed": ("question", ("pertenence-to-group", 'earth', 'moon')),
|
||||
},
|
||||
{
|
||||
"text": "Green is a color",
|
||||
"parsed": ("pertenence-to-group", 'green', 'color'),
|
||||
},
|
||||
{
|
||||
"text": "a plane can fly",
|
||||
"parsed": ("has-capacity", 'plane', 'fly')
|
||||
},
|
||||
{
|
||||
"text": "a wale can swim",
|
||||
"parsed": ("has-capacity", 'wale', 'swim')
|
||||
},
|
||||
{
|
||||
"text": "if earth is a planet, it is big",
|
||||
"parsed": ("implies",
|
||||
("pertenence-to-group", 'earth', 'planet'),
|
||||
("exists-property-with-value", 'earth', 'big')),
|
||||
},
|
||||
]
|
||||
|
||||
base_knowledge = {
|
||||
'icecream': {
|
||||
"groups": set(['noun', 'object', 'comestible', 'sweet']),
|
||||
},
|
||||
'lava': {
|
||||
"groups": set(['noun', 'object']),
|
||||
},
|
||||
'earth': {
|
||||
"groups": set(['noun', 'object', 'planet']),
|
||||
},
|
||||
'io': {
|
||||
"groups": set(['noun', 'object']),
|
||||
},
|
||||
'green': {
|
||||
"groups": set(['noun', 'color', 'concept']),
|
||||
},
|
||||
'plane': {
|
||||
"groups": set(['noun', 'object', 'vehicle', 'fast']),
|
||||
},
|
||||
'car': {
|
||||
"groups": set(['noun', 'object', 'vehicle', 'slow-ish']),
|
||||
},
|
||||
'wale': {
|
||||
"groups": set(['noun', 'object', 'living-being']),
|
||||
},
|
||||
'cold': {
|
||||
"groups": set(['property', 'temperature']),
|
||||
"as_property": "temperature",
|
||||
},
|
||||
'dangerous': {
|
||||
"groups": set(['property']),
|
||||
"as_property": "safety",
|
||||
},
|
||||
'planet': {
|
||||
"groups": set(['noun', 'group']),
|
||||
},
|
||||
'moon': {
|
||||
"groups": set(['noun', 'group']),
|
||||
},
|
||||
'color': {
|
||||
"groups": set(['property', 'group']),
|
||||
},
|
||||
'fly': {
|
||||
"groups": set(['verb']),
|
||||
},
|
||||
'swim': {
|
||||
"groups": set(['verb']),
|
||||
},
|
||||
}
|
||||
tests = (
|
||||
("tokenization", tokenization),
|
||||
("basic", basic),
|
||||
("gac 100", gac_100),
|
||||
("gac+", gac_extension),
|
||||
)
|
||||
|
||||
|
||||
def test_assumption(expectedResponse, knowledge, query):
|
||||
logging.info("Query: {}".format(query['text']))
|
||||
logging.info("Expected: {}".format(expectedResponse))
|
||||
|
||||
result, abstract_tree, diff = knowledge.process(query['text'])
|
||||
end_result = result.getter() if is_modifiable_property(result) else result
|
||||
|
||||
logging.info("\x1b[0;3{}mResult: {}\x1b[0m".format("1" if end_result != expectedResponse else "2", end_result))
|
||||
assert(end_result == expectedResponse)
|
||||
def gen_session_name():
|
||||
return "treeNLU-test-session.org"
|
||||
|
||||
|
||||
def main():
|
||||
knowledge = KnowledgeBase(
|
||||
knowledge=base_knowledge,
|
||||
)
|
||||
org_mode.create_global_session(gen_session_name())
|
||||
failed = False
|
||||
for test_name, test_module in tests:
|
||||
try:
|
||||
with org_mode.global_session().log(test_name):
|
||||
test_module.main()
|
||||
print(" \x1b[1;32m✓\x1b[0m {}".format(test_name))
|
||||
except AssertionError as ae:
|
||||
print(" \x1b[1;31m✗\x1b[0m {}{}".format(test_name,
|
||||
('\n [Assertion] {}'.format(ae.args[0])) if len(ae.args) > 0
|
||||
else ''))
|
||||
traceback.print_exc()
|
||||
failed = True
|
||||
|
||||
differences = knowledge.train(examples)
|
||||
except Exception as e:
|
||||
print(" \x1b[1;7;31m!\x1b[0m {}\n [Exception] {}".format(test_name, e))
|
||||
failed = True
|
||||
traceback.print_exc()
|
||||
raise
|
||||
org_mode.global_session().close()
|
||||
|
||||
logging.info("----")
|
||||
logging.info(differences())
|
||||
logging.info("----")
|
||||
|
||||
test_assumption(True, knowledge, {'text': 'earth is a planet'})
|
||||
test_assumption(True, knowledge, {'text': 'is lava dangerous?'})
|
||||
for test in [{'text': 'a bus can run'}, {'text': 'io is a moon'}]:
|
||||
row = test['text']
|
||||
result, inferred_tree, differences = knowledge.process(row)
|
||||
|
||||
logging.info("result:", result)
|
||||
logging.info(differences())
|
||||
logging.info("---")
|
||||
logging.info('-----')
|
||||
logging.info(json.dumps(sorted(knowledge.knowledge.keys()), indent=4))
|
||||
logging.info('-----')
|
||||
|
||||
queryTrue = {
|
||||
"text": "is io a moon?",
|
||||
"parsed": ("question", ("pertenence-to-group", "io", "moon"))
|
||||
}
|
||||
queryFalse = {
|
||||
"text": "is io a planet?",
|
||||
"parsed": ("question", ("pertenence-to-group", "io", "planet"))
|
||||
}
|
||||
|
||||
test_assumption(False, knowledge, queryFalse)
|
||||
test_assumption(True, knowledge, queryTrue)
|
||||
if failed:
|
||||
exit(1)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
166
naive-nlu/tree_nlu/tests/basic.py
Normal file
166
naive-nlu/tree_nlu/tests/basic.py
Normal file
@ -0,0 +1,166 @@
|
||||
from ..session.org_mode import global_session as session
|
||||
import json
|
||||
|
||||
from ..knowledge_base import KnowledgeBase
|
||||
from ..modifiable_property import is_modifiable_property
|
||||
from ..utils.tokenization import train_basic_tokenization
|
||||
|
||||
examples = [
|
||||
{
|
||||
"text": "icecream is cold",
|
||||
"parsed": ("exists-property-with-value", 'icecream', 'cold'),
|
||||
},
|
||||
{
|
||||
"text": "is icecream cold?",
|
||||
"parsed": ("question", ("exists-property-with-value", 'icecream', 'cold'))
|
||||
},
|
||||
{
|
||||
"text": "lava is dangerous",
|
||||
"parsed": ("exists-property-with-value", 'lava', 'dangerous')
|
||||
},
|
||||
{
|
||||
"text": "is lava dangerous?",
|
||||
"parsed": ("question", ("exists-property-with-value", 'lava', 'dangerous')),
|
||||
},
|
||||
{
|
||||
"text": "earth is a planet",
|
||||
"parsed": ("pertenence-to-group", 'earth', 'planet'),
|
||||
},
|
||||
{
|
||||
"text": "io is a moon",
|
||||
"parsed": ("pertenence-to-group", 'io', 'moon'),
|
||||
},
|
||||
{
|
||||
"text": "is earth a moon?",
|
||||
"parsed": ("question", ("pertenence-to-group", 'earth', 'moon')),
|
||||
},
|
||||
{
|
||||
"text": "Green is a color",
|
||||
"parsed": ("pertenence-to-group", 'green', 'color'),
|
||||
},
|
||||
{
|
||||
"text": "a plane can fly",
|
||||
"parsed": ("has-capacity", 'plane', 'fly')
|
||||
},
|
||||
{
|
||||
"text": "a wale can swim",
|
||||
"parsed": ("has-capacity", 'wale', 'swim')
|
||||
},
|
||||
# {
|
||||
# "text": "if earth is a planet, it is big",
|
||||
# "parsed": ("implies",
|
||||
# ("pertenence-to-group", 'earth', 'planet'),
|
||||
# ("exists-property-with-value", 'earth', 'big')),
|
||||
# },
|
||||
]
|
||||
|
||||
base_knowledge = {
|
||||
'icecream': {
|
||||
"groups": {'noun', 'object', 'comestible', 'sweet'},
|
||||
},
|
||||
'lava': {
|
||||
"groups": {'noun', 'object'},
|
||||
},
|
||||
'earth': {
|
||||
"groups": {'noun', 'object', 'planet'},
|
||||
},
|
||||
'io': {
|
||||
"groups": {'noun', 'object'},
|
||||
},
|
||||
'green': {
|
||||
"groups": {'noun', 'color', 'concept'},
|
||||
},
|
||||
'plane': {
|
||||
"groups": {'noun', 'object', 'vehicle', 'fast'},
|
||||
},
|
||||
'car': {
|
||||
"groups": {'noun', 'object', 'vehicle', 'slow-ish'},
|
||||
},
|
||||
'wale': {
|
||||
"groups": {'noun', 'object', 'living-being'},
|
||||
},
|
||||
'cold': {
|
||||
"groups": {'property', 'temperature'},
|
||||
"as_property": "temperature",
|
||||
},
|
||||
'dangerous': {
|
||||
"groups": {'property'},
|
||||
"as_property": "safety",
|
||||
},
|
||||
'planet': {
|
||||
"groups": {'noun', 'group'},
|
||||
},
|
||||
'moon': {
|
||||
"groups": {'noun', 'group'},
|
||||
},
|
||||
'color': {
|
||||
"groups": {'property', 'group'},
|
||||
},
|
||||
'fly': {
|
||||
"groups": {'verb'},
|
||||
},
|
||||
'bus': {
|
||||
"groups": {'noun'},
|
||||
},
|
||||
'run': {
|
||||
"groups": {'verb'},
|
||||
},
|
||||
'swim': {
|
||||
"groups": {'verb'},
|
||||
},
|
||||
'planet': {
|
||||
'groups': {'noun'}
|
||||
}
|
||||
}
|
||||
|
||||
def test_assumption(expectedResponse, knowledge, query):
|
||||
with session().log(query['text']):
|
||||
session().annotate("Expected: {}".format(expectedResponse))
|
||||
|
||||
result, abstract_tree, diff = knowledge.process(query['text'])
|
||||
end_result = result.getter() if is_modifiable_property(result) else result
|
||||
|
||||
session().annotate("Result: {}".format(end_result))
|
||||
if end_result != expectedResponse:
|
||||
raise AssertionError('{} is not {}'.format(end_result, expectedResponse))
|
||||
|
||||
def main():
|
||||
knowledge = KnowledgeBase(
|
||||
knowledge=base_knowledge,
|
||||
)
|
||||
|
||||
train_basic_tokenization(knowledge)
|
||||
|
||||
for example in examples:
|
||||
with session().log(example['text']):
|
||||
differences = knowledge.train([example])
|
||||
|
||||
session().annotate("----")
|
||||
session().annotate(differences())
|
||||
session().annotate("----")
|
||||
|
||||
test_assumption(True, knowledge, {'text': 'earth is a planet'})
|
||||
test_assumption(True, knowledge, {'text': 'is lava dangerous?'})
|
||||
for test in [{'text': 'a bus can run'}, {'text': 'io is a moon'}]:
|
||||
row = test['text']
|
||||
result, inferred_tree, differences = knowledge.process(row)
|
||||
|
||||
session().annotate("result: {}".format(result))
|
||||
session().annotate(differences())
|
||||
session().annotate("---")
|
||||
session().annotate('-----')
|
||||
session().annotate(json.dumps(sorted(knowledge.knowledge.keys()), indent=4))
|
||||
session().annotate('-----')
|
||||
|
||||
queryTrue = {
|
||||
"text": "is io a moon?",
|
||||
"parsed": ("question", ("pertenence-to-group", "io", "moon"))
|
||||
}
|
||||
queryFalse = {
|
||||
"text": "is io a planet?",
|
||||
"parsed": ("question", ("pertenence-to-group", "io", "planet"))
|
||||
}
|
||||
|
||||
test_assumption(False, knowledge, queryFalse)
|
||||
test_assumption(True, knowledge, queryTrue)
|
||||
return knowledge
|
736
naive-nlu/tree_nlu/tests/gac_100.py
Normal file
736
naive-nlu/tree_nlu/tests/gac_100.py
Normal file
@ -0,0 +1,736 @@
|
||||
from ..session.org_mode import global_session as session
|
||||
from ..knowledge_base import KnowledgeBase
|
||||
from ..utils.visuals import show_progbar
|
||||
from ..visualization import show_knowledge
|
||||
from ..utils.tokenization import train_basic_tokenization
|
||||
|
||||
def _assert(args):
|
||||
assert(args)
|
||||
|
||||
def _assert_msg(args, msg):
|
||||
assert args, msg
|
||||
|
||||
examples = [
|
||||
('full_example',
|
||||
{
|
||||
"text": "is icecream cold?",
|
||||
"affirmation": "icecream is cold",
|
||||
"parsed": ("question",
|
||||
("exists-property-with-value", 'icecream', 'cold')),
|
||||
"answer": True,
|
||||
"after_execution": [(
|
||||
lambda knowledge: _assert('cold' in knowledge.knowledge['icecream']['property'])
|
||||
),],
|
||||
}),
|
||||
('full_example',
|
||||
{
|
||||
"text": "is earth a planet?",
|
||||
"affirmation": "earth is a planet",
|
||||
"parsed": ("question",
|
||||
("pertenence-to-group", 'earth', 'planet')),
|
||||
"answer": True,
|
||||
"after_execution": [(
|
||||
lambda knowledge: _assert('planet' in knowledge.knowledge['earth']['groups'])
|
||||
),],
|
||||
}),
|
||||
('full_example',
|
||||
{
|
||||
"text": "Is green a color?",
|
||||
"affirmation": "green is a color",
|
||||
"parsed": ("question",
|
||||
("pertenence-to-group", 'green', 'color')),
|
||||
"answer": True,
|
||||
"after_execution": [(
|
||||
lambda knowledge: _assert('color' in knowledge.knowledge['green']['groups'])
|
||||
),],
|
||||
}),
|
||||
('full_example',
|
||||
{
|
||||
"text": "do airplanes fly?",
|
||||
"affirmation": "airplanes fly",
|
||||
"parsed": ("question",
|
||||
("has-capacity", 'plane', 'fly')),
|
||||
"answer": True,
|
||||
"after_execution": [(
|
||||
lambda knowledge: _assert('fly' in knowledge.knowledge['plane']['capacities'])
|
||||
),],
|
||||
}),
|
||||
('full_example',
|
||||
{
|
||||
"text": "Is it hot during the summer?",
|
||||
"affirmation": "it is hot during summer",
|
||||
"parsed": ("question",
|
||||
("implies", 'summer', 'hot')),
|
||||
"answer": True,
|
||||
"after_execution": [(
|
||||
lambda knowledge: _assert('hot' in knowledge.knowledge['summer']['implications'])
|
||||
),],
|
||||
}),
|
||||
('full_example',
|
||||
{
|
||||
"text": "is chile in south america ?",
|
||||
"affirmation": "chile is in south america",
|
||||
"parsed": ("question",
|
||||
("property-has-value", 'chile', 'location', 'south america')),
|
||||
"answer": True,
|
||||
"after_execution": [(
|
||||
lambda knowledge: _assert('south america' in knowledge.knowledge['chile']['location'])
|
||||
),],
|
||||
}),
|
||||
('full_example',
|
||||
{
|
||||
"text": "Was Socrates a man?",
|
||||
"affirmation": "Socrates was a man",
|
||||
"parsed": ("question",
|
||||
("pertenence-to-group", 'socrates', 'man')),
|
||||
"answer": True,
|
||||
"after_execution": [(
|
||||
lambda knowledge: _assert('man' in knowledge.knowledge['socrates']['groups'])
|
||||
),],
|
||||
}),
|
||||
('full_example',
|
||||
{
|
||||
"text": "Computers use electricity?",
|
||||
"affirmation": "Computers use electricity",
|
||||
"parsed": ("question",
|
||||
('perform-verb-over-object', 'computers', 'use', 'electricity')),
|
||||
"answer": True,
|
||||
"after_execution": [(
|
||||
lambda knowledge: _assert('electricity' in knowledge.knowledge['computers']['performs-over']['use'])
|
||||
),],
|
||||
}),
|
||||
# ('full_example',
|
||||
# {
|
||||
# "text": "The dominant language in france is french?",
|
||||
# "affirmation": "The dominant language in france is french",
|
||||
# "parsed": ("question",
|
||||
# ("property-has-value", "france", "dominant-language", "french")),
|
||||
# "answer": True,
|
||||
# }),
|
||||
# {
|
||||
# "text": "was abraham lincoln once president of the united states?",
|
||||
# "affirmation": "was abraham lincoln once president of the united states?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
('text_example',
|
||||
{
|
||||
"question": "is milk white?",
|
||||
"affirmation": "milk is white",
|
||||
"answer": True,
|
||||
}),
|
||||
# {
|
||||
# "text": "do people have emotions?",
|
||||
# "affirmation": "do people have emotions?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "do objects appear smaller as they move away from you?",
|
||||
# "affirmation": "do objects appear smaller as they move away from you?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Does the human species have a male and female gender?",
|
||||
# "affirmation": "Does the human species have a male and female gender?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is a mountain mostly made of rock?",
|
||||
# "affirmation": "Is a mountain mostly made of rock?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "is sun microsystems a computer company?",
|
||||
# "affirmation": "is sun microsystems a computer company?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Do you see with your eyes and smell with your nose?",
|
||||
# "affirmation": "Do you see with your eyes and smell with your nose?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is smoking bad for your health?",
|
||||
# "affirmation": "Is smoking bad for your health?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Does a dog have four legs?",
|
||||
# "affirmation": "Does a dog have four legs?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Do mammals have hearts?",
|
||||
# "affirmation": "Do mammals have hearts?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "is the Earth a planet?",
|
||||
# "affirmation": "is the Earth a planet?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# ('text_example',
|
||||
# {
|
||||
# "question": "is water a liquid?",
|
||||
# "affirmation": "water is a liquid",
|
||||
# "answer": True,
|
||||
# }),
|
||||
# {
|
||||
# "text": "Is Bugs Bunny a cartoon character?",
|
||||
# "affirmation": "Is Bugs Bunny a cartoon character?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Do Humans communicate by Telephone?",
|
||||
# "affirmation": "Do Humans communicate by Telephone?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "is beer a drink ?",
|
||||
# "affirmation": "is beer a drink ?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "are there 12 months in a year?",
|
||||
# "affirmation": "are there 12 months in a year?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "does the sun hurt your eyes when you look at it?",
|
||||
# "affirmation": "does the sun hurt your eyes when you look at it?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Do most cars have doors?",
|
||||
# "affirmation": "Do most cars have doors?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "is orange both a fruit and a colour?",
|
||||
# "affirmation": "is orange both a fruit and a colour?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is water a necessity?",
|
||||
# "affirmation": "Is water a necessity?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Do CDs have better quality sound than Cassettes?",
|
||||
# "affirmation": "Do CDs have better quality sound than Cassettes?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "do animals die?",
|
||||
# "affirmation": "do animals die?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is the arctic cold?",
|
||||
# "affirmation": "Is the arctic cold?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Do people have 2 eyes?",
|
||||
# "affirmation": "Do people have 2 eyes?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "does a person have a brain?",
|
||||
# "affirmation": "does a person have a brain?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is the rain wet?",
|
||||
# "affirmation": "Is the rain wet?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is division a mathematical operation?",
|
||||
# "affirmation": "Is division a mathematical operation?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "is 400 greater than 399?",
|
||||
# "affirmation": "is 400 greater than 399?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "is magenta a color?",
|
||||
# "affirmation": "is magenta a color?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Are books educational?",
|
||||
# "affirmation": "Are books educational?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Was the Great Wall of China built by humans?",
|
||||
# "affirmation": "Was the Great Wall of China built by humans?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Are pianos musical instruments?",
|
||||
# "affirmation": "Are pianos musical instruments?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Has Bill Clinton been President of the United States?",
|
||||
# "affirmation": "Has Bill Clinton been President of the United States?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is a whale a mammal?",
|
||||
# "affirmation": "Is a whale a mammal?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Are lemons yellow?",
|
||||
# "affirmation": "Are lemons yellow?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is the South Pole cold?",
|
||||
# "affirmation": "Is the South Pole cold?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is Africa warm?",
|
||||
# "affirmation": "Is Africa warm?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is Antarctica cold?",
|
||||
# "affirmation": "Is Antarctica cold?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is rock is generally harder than wood?",
|
||||
# "affirmation": "Is rock is generally harder than wood?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Do dogs chase cats?",
|
||||
# "affirmation": "Do dogs chase cats?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "can humans die from cold temperatures?",
|
||||
# "affirmation": "can humans die from cold temperatures?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "do people enjoy conversation?",
|
||||
# "affirmation": "do people enjoy conversation?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is Bill Clinton the President of the United States?",
|
||||
# "affirmation": "Is Bill Clinton the President of the United States?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Are books a good source of information?",
|
||||
# "affirmation": "Are books a good source of information?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "are friends different than enemies?",
|
||||
# "affirmation": "are friends different than enemies?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "are people alive?",
|
||||
# "affirmation": "are people alive?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Do triangles have 3 sides?",
|
||||
# "affirmation": "Do triangles have 3 sides?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is Ice cream cold?",
|
||||
# "affirmation": "Is Ice cream cold?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Are all sides of a square the same length?",
|
||||
# "affirmation": "Are all sides of a square the same length?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Do all people eat food?",
|
||||
# "affirmation": "Do all people eat food?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "do dentists repair teeth?",
|
||||
# "affirmation": "do dentists repair teeth?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is America bigger than Japan?",
|
||||
# "affirmation": "Is America bigger than Japan?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Do all triangles have three sides?",
|
||||
# "affirmation": "Do all triangles have three sides?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "A grocery store sales food?",
|
||||
# "affirmation": "A grocery store sales food?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Does a sunburn cause pain?",
|
||||
# "affirmation": "Does a sunburn cause pain?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is a computer an invention?",
|
||||
# "affirmation": "Is a computer an invention?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "have humans visited the moon?",
|
||||
# "affirmation": "have humans visited the moon?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Are there people in India?",
|
||||
# "affirmation": "Are there people in India?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Was Einstein a genius?",
|
||||
# "affirmation": "Was Einstein a genius?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Are we on the planet earth?",
|
||||
# "affirmation": "Are we on the planet earth?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "do people comb their hair in the morning?",
|
||||
# "affirmation": "do people comb their hair in the morning?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Does it hurt to lose a friend?",
|
||||
# "affirmation": "Does it hurt to lose a friend?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Are there people on the earth?",
|
||||
# "affirmation": "Are there people on the earth?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Was George Washington a president of the United States of America?",
|
||||
# "affirmation": "Was George Washington a president of the United States of America?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Does an ocean have salt water in it?",
|
||||
# "affirmation": "Does an ocean have salt water in it?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is night darker than day?",
|
||||
# "affirmation": "Is night darker than day?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Does a triangle have three sides?",
|
||||
# "affirmation": "Does a triangle have three sides?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Are peaches fruit?",
|
||||
# "affirmation": "Are peaches fruit?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Do people urinate?",
|
||||
# "affirmation": "Do people urinate?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is Germany located in Europe?",
|
||||
# "affirmation": "Is Germany located in Europe?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Do mirrors reflect light?",
|
||||
# "affirmation": "Do mirrors reflect light?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Are people born naked?",
|
||||
# "affirmation": "Are people born naked?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is it hot near the equator?",
|
||||
# "affirmation": "Is it hot near the equator?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "is paper made from trees?",
|
||||
# "affirmation": "is paper made from trees?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Can a female have children?",
|
||||
# "affirmation": "Can a female have children?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Are people born every day?",
|
||||
# "affirmation": "Are people born every day?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Are shoes worn on the feet?",
|
||||
# "affirmation": "Are shoes worn on the feet?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "does it get wet when it rains?",
|
||||
# "affirmation": "does it get wet when it rains?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Are there plants and insects in the rainforest which have no names?",
|
||||
# "affirmation": "Are there plants and insects in the rainforest which have no names?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Do people eat pigs?",
|
||||
# "affirmation": "Do people eat pigs?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Do businessmen wear ties?",
|
||||
# "affirmation": "Do businessmen wear ties?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is New York in the United States?",
|
||||
# "affirmation": "Is New York in the United States?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Are humans more intelligent than ants?",
|
||||
# "affirmation": "Are humans more intelligent than ants?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Are ravens black?",
|
||||
# "affirmation": "Are ravens black?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Are there rats on ships?",
|
||||
# "affirmation": "Are there rats on ships?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "are lions animals?",
|
||||
# "affirmation": "are lions animals?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "6 is greater than 5?",
|
||||
# "affirmation": "6 is greater than 5?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Is water made of hydrogen and oxygen?",
|
||||
# "affirmation": "Is water made of hydrogen and oxygen?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "is the sky blue on a clear day?",
|
||||
# "affirmation": "is the sky blue on a clear day?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
# {
|
||||
# "text": "Do most people work during the day?",
|
||||
# "affirmation": "Do most people work during the day?",
|
||||
# "parsed": (),
|
||||
# "answer": None,
|
||||
# },
|
||||
]
|
||||
|
||||
base_knowledge = {
|
||||
'summer': {
|
||||
"groups": {'epoch'},
|
||||
},
|
||||
'fly': {
|
||||
"groups": {'verb'},
|
||||
},
|
||||
'use': {
|
||||
"groups": {'verb'},
|
||||
},
|
||||
'electricity': {
|
||||
"groups": {'power'},
|
||||
},
|
||||
'airplanes': {},
|
||||
'white': {
|
||||
'groups': {'property'},
|
||||
}
|
||||
}
|
||||
|
||||
def main():
|
||||
knowledge = KnowledgeBase(
|
||||
knowledge=base_knowledge,
|
||||
)
|
||||
|
||||
train_basic_tokenization(knowledge)
|
||||
|
||||
total = len(examples)
|
||||
|
||||
for i, (example_type, data) in enumerate(examples):
|
||||
if example_type == 'full_example':
|
||||
affirmation = {
|
||||
'text': data['affirmation'],
|
||||
'parsed': data['parsed'][1],
|
||||
}
|
||||
question = data
|
||||
|
||||
with session().log(data['affirmation']):
|
||||
show_progbar(i, total, data['affirmation'])
|
||||
differences = knowledge.train([affirmation])
|
||||
|
||||
with session().log(data['text']):
|
||||
show_progbar(i, total, data['text'])
|
||||
differences = knowledge.train([question])
|
||||
session().annotate(differences())
|
||||
|
||||
result, _, _ = knowledge.process(data['text'])
|
||||
|
||||
if "after_execution" in data:
|
||||
for f in data["after_execution"]:
|
||||
f(knowledge)
|
||||
|
||||
if result != data['answer']:
|
||||
raise AssertionError('{} is not {}'.format(result, data['answer']))
|
||||
|
||||
elif example_type == 'text_example':
|
||||
with session().log(data['affirmation']):
|
||||
show_progbar(i, total, data['affirmation'])
|
||||
affirmation = data['affirmation']
|
||||
session().annotate("Processing affirmation: {}".format(affirmation))
|
||||
_, _, _ = knowledge.process(affirmation)
|
||||
|
||||
with session().log(data['question']):
|
||||
show_progbar(i, total, data['question'])
|
||||
question = data['question']
|
||||
session().annotate("Processing question : {}".format(question))
|
||||
result, _, _ = knowledge.process(question)
|
||||
|
||||
if result != data['answer']:
|
||||
raise AssertionError('{} is not {}'.format(result, data['answer']))
|
||||
|
||||
else:
|
||||
raise NotImplementedError('Example type: {}'.format(example_type))
|
||||
|
||||
print("\r\x1b[K", end='')
|
||||
return knowledge
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
show_knowledge(main())
|
26
naive-nlu/tree_nlu/tests/gac_extension.py
Normal file
26
naive-nlu/tree_nlu/tests/gac_extension.py
Normal file
@ -0,0 +1,26 @@
|
||||
from ..knowledge_base import KnowledgeBase
|
||||
from ..session.org_mode import global_session as session
|
||||
|
||||
from . import gac_100
|
||||
|
||||
|
||||
def ask_then_learn_test(knowledge: KnowledgeBase):
|
||||
with session().log("is icecream blue?"):
|
||||
ret, _, _ = knowledge.process("is icecream blue?")
|
||||
assert(ret is False)
|
||||
|
||||
with session().log("icecream is blue"):
|
||||
ret, _, _ = knowledge.process("icecream is blue")
|
||||
|
||||
with session().log("is icecream blue?"):
|
||||
ret, _, _ = knowledge.process("is icecream blue?")
|
||||
assert(ret is True)
|
||||
|
||||
return knowledge
|
||||
|
||||
|
||||
def main():
|
||||
knowledge = gac_100.main()
|
||||
|
||||
knowledge.knowledge['blue'] = {'groups': {'property'}}
|
||||
knowledge = ask_then_learn_test(knowledge)
|
80
naive-nlu/tree_nlu/tests/tokenization.py
Normal file
80
naive-nlu/tree_nlu/tests/tokenization.py
Normal file
@ -0,0 +1,80 @@
|
||||
from ..session.org_mode import global_session as session
|
||||
from ..knowledge_base import KnowledgeBase
|
||||
from ..utils.visuals import show_progbar
|
||||
from ..visualization import show_knowledge
|
||||
|
||||
|
||||
def _assert(args):
|
||||
assert(args)
|
||||
|
||||
|
||||
def _assert_msg(args, msg):
|
||||
assert args, msg
|
||||
|
||||
|
||||
EXAMPLES = [
|
||||
('example', {
|
||||
"text": 'cat',
|
||||
"tokens": ['cat'],
|
||||
}),
|
||||
('example', {
|
||||
"text": 'cats',
|
||||
"tokens": ['cats'],
|
||||
"meaning": { 'cats': ('add-modifier', 'cat', 'plural') },
|
||||
}),
|
||||
('example', {
|
||||
"text": 'text separated by spaces',
|
||||
"tokens": ['text', 'separated', 'by', 'spaces'],
|
||||
}),
|
||||
('example', {
|
||||
"text": 'is earth a planet?',
|
||||
"tokens": ['is', 'earth', 'a', 'planet', '?'],
|
||||
}),
|
||||
('test', {
|
||||
"text": 'plane',
|
||||
"tokens": ['plane'],
|
||||
}),
|
||||
# ('test', {
|
||||
# "text": 'planes',
|
||||
# "tokens": ['planes'],
|
||||
# "meaning": { 'planes': ('add-modifier', 'plane', 'plural') },
|
||||
# }),
|
||||
('test', {
|
||||
"text": 'some other text',
|
||||
"tokens": ['some', 'other', 'text'],
|
||||
}),
|
||||
('test', {
|
||||
"text": 'is the sun a star?',
|
||||
"tokens": ['is', 'the', 'sun', 'a', 'star', '?'],
|
||||
}),
|
||||
('test', {
|
||||
"text": 'sometextnotseparatedbyspaces',
|
||||
"tokens": ['some', 'text', 'not', 'separated', 'by', 'spaces'],
|
||||
})
|
||||
]
|
||||
|
||||
|
||||
def main():
|
||||
knowledge = KnowledgeBase()
|
||||
|
||||
total = len(EXAMPLES)
|
||||
|
||||
for i, (case_type, example) in enumerate(EXAMPLES):
|
||||
show_progbar(i, total, example['text'])
|
||||
if case_type == 'example':
|
||||
with session().log(example['text']):
|
||||
knowledge.layers.tokenization.train(example)
|
||||
|
||||
elif case_type == 'test':
|
||||
with session().log(example['text']):
|
||||
tokens = list(knowledge.layers.tokenization.tokenize(example['text']))
|
||||
|
||||
session().log('Expected “{}”, found “{}”'
|
||||
.format(example['tokens'], tokens))
|
||||
assert example['tokens'] == tokens
|
||||
|
||||
else:
|
||||
raise Exception('Not implemented case {}'.format(case_type))
|
||||
|
||||
print("\r\x1b[K", end='')
|
||||
return knowledge
|
4
naive-nlu/tree_nlu/utils/json_dumper.py
Normal file
4
naive-nlu/tree_nlu/utils/json_dumper.py
Normal file
@ -0,0 +1,4 @@
|
||||
def dumper(obj):
|
||||
if isinstance(obj, set):
|
||||
return list(obj)
|
||||
return obj
|
29
naive-nlu/tree_nlu/utils/tokenization.py
Normal file
29
naive-nlu/tree_nlu/utils/tokenization.py
Normal file
@ -0,0 +1,29 @@
|
||||
from ..session.org_mode import (
|
||||
global_session as session,
|
||||
)
|
||||
|
||||
BASIC_TOKENIZATION_EXAMPLES = (
|
||||
({
|
||||
"text": 'cat',
|
||||
"tokens": ['cat'],
|
||||
}),
|
||||
({
|
||||
"text": 'cats',
|
||||
"tokens": ['cats'],
|
||||
"meaning": { 'cats': ('add-modifier', 'cat', 'plural') },
|
||||
}),
|
||||
({
|
||||
"text": 'text separated by spaces',
|
||||
"tokens": ['text', 'separated', 'by', 'spaces'],
|
||||
}),
|
||||
({
|
||||
"text": 'is earth a planet?',
|
||||
"tokens": ['is', 'earth', 'a', 'planet', '?'],
|
||||
}),
|
||||
)
|
||||
|
||||
|
||||
def train_basic_tokenization(knowledge_base):
|
||||
with session().log('Training basic tokenization'):
|
||||
for example in BASIC_TOKENIZATION_EXAMPLES:
|
||||
knowledge_base.layers.tokenization.train(example)
|
15
naive-nlu/tree_nlu/utils/visuals.py
Normal file
15
naive-nlu/tree_nlu/utils/visuals.py
Normal file
@ -0,0 +1,15 @@
|
||||
def show_progbar(done, total, msg=''):
|
||||
total_blocks = 10
|
||||
blocks_done = (done * total_blocks) // total
|
||||
blocks_to_go = total_blocks - blocks_done
|
||||
|
||||
print('\r\x1b[K' # Go to the start of the line
|
||||
'\x1b[0m' # Restart the "style"
|
||||
'|' # Put the first "|"
|
||||
+ blocks_done * '█' # Completed blocks
|
||||
+ blocks_to_go * ' ' # Uncompleted blocks
|
||||
+ '\x1b[7m|\x1b[0m' # End the bar
|
||||
+ ' '
|
||||
+ msg # Add message
|
||||
+ '\r' # Go back to the start
|
||||
, end='')
|
8
naive-nlu/tree_nlu/visualization.py
Normal file
8
naive-nlu/tree_nlu/visualization.py
Normal file
@ -0,0 +1,8 @@
|
||||
def show_knowledge(knowledge):
|
||||
for key in knowledge.knowledge:
|
||||
print("\x1b[1m{}\x1b[0m {}".format(key, knowledge.knowledge[key]))
|
||||
|
||||
|
||||
def show_samples(knowledge):
|
||||
for example in knowledge.originals:
|
||||
print("{}".format(example))
|
Loading…
Reference in New Issue
Block a user