Merge branch 'learn-tokenization' into naive-nlu

This commit is contained in:
kenkeiras 2018-04-16 00:00:12 +02:00
commit c18c9b8cb1
10 changed files with 436 additions and 26 deletions

View File

@ -0,0 +1,23 @@
'''
Analogous to erlang ones.
"An atom is a literal, a constant with name."
'''
from collections import namedtuple
Atom = namedtuple('Atom', field_names='name')
def is_atom(element, name=None):
'''Check if an element is an atom with a specific name.'''
if not isinstance(element, Atom):
return False
if name is None:
return True
return element.name == name
def a(name):
'''Build an atom with a given name.'''
return Atom(name)

View File

@ -3,22 +3,74 @@ import logging
from .session.org_mode import global_session as session
from .atoms import Atom
from . import parsing
from . import tokenization
from . import knowledge_evaluation
from .modifiable_property import is_modifiable_property
import random
def diff_knowledge(before, after):
import jsondiff
return jsondiff.diff(before, after)
def randomized_weighted_list(elements):
# Randomized
randomized = list(elements)
random.shuffle(randomized)
# And return only once
already_returned = set()
for e in randomized:
if e in already_returned:
continue
yield e
already_returned.add(e)
class KnowledgeBase(object):
def __init__(self, knowledge, examples=[], trained=[]):
def __init__(self, knowledge={}, examples=[], trained=[]):
self.knowledge = copy.copy(knowledge)
self.originals = []
self.examples = copy.copy(examples)
self.trained = copy.copy(trained)
self.structural_elements = set()
self.token_chains = {}
self.tokens = set()
def add_token_pair(self, precedent, consequent):
self.add_token(precedent)
self.add_token(consequent)
if precedent not in self.token_chains:
self.token_chains[precedent] = []
self.token_chains[precedent].append(consequent)
def add_token(self, token):
self.tokens.add(token)
if (not isinstance(token, Atom)) and (token not in self.structural_elements):
session().annotate('Found new structural element “{}'.format(token))
self.structural_elements.add(token)
def expected_token_after_precedent(self, precedent=None):
if precedent not in self.token_chains: # If there's no known precedent, just return all tokens
return randomized_weighted_list(self.tokens)
return randomized_weighted_list(self.token_chains[precedent])
def train_tokenizer(self, example):
with session().log('Training tokenizer'):
session().annotate("Example: {}".format(example))
tokens = tokenization.integrate_tokenization(self, example)
# Integrate knowledge of concept
for token in tokens:
if not token in self.knowledge:
self.knowledge[token] = {}
def train(self, examples):
knowledge_before = copy.deepcopy(self.knowledge)
@ -26,7 +78,7 @@ class KnowledgeBase(object):
# Parse everything
for example in examples:
# If there's parsed data, leverage it ASAP
if 'parsed' in example:
if 'parsed' in example and isinstance(example['parsed'], tuple):
with session().log('parsed information integration'):
result = knowledge_evaluation.integrate_information(self.knowledge, {
"parsed": example['parsed'],
@ -35,7 +87,8 @@ class KnowledgeBase(object):
with session().log("language integration"):
tokens, decomposition, inferred_tree = parsing.integrate_language(self, example)
session().annotate(tokens)
session().annotate("Tokens: {}".format(tokens))
session().annotate("Inferred tree: {}".format(inferred_tree))
with session().log("full information integration"):
result = knowledge_evaluation.integrate_information(self.knowledge, {
@ -60,11 +113,24 @@ class KnowledgeBase(object):
return knowledge_diff_getter
def process(self, row):
def tokenize(self, row, return_one=True):
row = row.lower()
with session().log("Tokenize: {}".format(row)):
options = list(tokenization.to_tokens(self, row))
session().log("Results:\n{}".format('\n'.join(map(str, options))))
if return_one:
chosen = tokenization.pick_one_tokenization(options, self)
session().log("Chosen: “{}".format(chosen))
self.train_tokenizer({'text': row, 'tokens': chosen})
return chosen
return options
def process(self, row):
knowledge_before = copy.deepcopy(self.knowledge)
with session().log("Process: {}".format(row)):
tokens = parsing.to_tokens(row)
tokens = self.tokenize(row)
fit = parsing.get_fit(self, tokens)
if fit is None:
return None

View File

@ -1,6 +1,7 @@
#!/usr/bin/env python
from . import knowledge_evaluation
from . import tokenization
from . import depth_meter
from .session.org_mode import global_session as session
@ -11,11 +12,7 @@ from functools import reduce
from typing import List, Dict
from .modifiable_property import ModifiableProperty
from . import parameters
# TODO: more flexible tokenization
def to_tokens(text):
return re.findall(r'(\w+|[^\s])', text)
from .atoms import Atom, a, is_atom
def make_template(knowledge_base, tokens, parsed):
matcher = list(tokens)
@ -87,7 +84,7 @@ def integrate_language(knowledge_base, example):
parsed = example["parsed"]
resolved_parsed = copy.deepcopy(parsed)
tokens = to_tokens(text)
tokens = list(tokenization.pick_one_tokenization(tokenization.to_tokens(knowledge_base, text), knowledge_base))
while True:
session().annotate("P: {}".format(resolved_parsed))
@ -226,24 +223,35 @@ def all_indexes(collection, element):
def all_matching_indexes(knowledge_base, collection, element):
indexes = []
assert("groups" in element)
element = element["groups"]
for i, instance in enumerate(collection):
if isinstance(instance, dict):
instance = instance["groups"]
elif instance in knowledge_base.knowledge:
instance = knowledge_base.knowledge[instance]["groups"]
with session().log('Matching “{}'.format(element)):
assert("groups" in element)
element = element["groups"]
for i, instance in enumerate(collection):
session().log('Checking “{}'.format(instance))
intersection = set(instance) & set(element)
if (len(intersection) > 0 or (0 == len(instance) == len(element))):
indexes.append((i, intersection))
if isinstance(instance, dict):
instance = instance["groups"]
elif instance in knowledge_base.knowledge:
session().log('Knowledge about “{}”: ”{}'.format(instance, knowledge_base.knowledge[instance]))
return [x[0] for x in sorted(indexes, key=lambda x: len(x[1]), reverse=True)]
if "groups" not in knowledge_base.knowledge[instance]:
# This means that is only known as token
# so we should try to avoid using it
continue
instance = knowledge_base.knowledge[instance]["groups"]
intersection = set(instance) & set(element)
if (len(intersection) > 0 or (0 == len(instance) == len(element))):
indexes.append((i, intersection))
return [x[0] for x in sorted(indexes, key=lambda x: len(x[1]), reverse=True)]
def element_matches_groups(knowledge, element: Dict, groups):
with session().log("Checking if e “{}” matches groups “{}".format(element, groups)):
if isinstance(groups, str) and groups in knowledge:
return len(knowledge[element].get("groups", set()) & element['groups']) > 0
return len(knowledge[groups].get("groups", set()) & element['groups']) > 0
elif isinstance(groups, dict):
return len(element.get("groups", set()) & element['groups']) > 0
return False

View File

@ -1,7 +1,8 @@
import traceback
import logging
import datetime
from .session import org_mode
from .tests import tokenization
from .tests import basic
from .tests import gac_100
from .tests import gac_extension
@ -9,6 +10,7 @@ from .tests import gac_extension
logging.getLogger().setLevel(logging.ERROR)
tests = (
("tokenization", tokenization),
("basic", basic),
("gac 100", gac_100),
("gac+", gac_extension),
@ -24,12 +26,14 @@ def main():
failed = False
for test_name, test_module in tests:
try:
test_module.main()
with org_mode.global_session().log(test_name):
test_module.main()
print(" \x1b[1;32m✓\x1b[0m {}".format(test_name))
except AssertionError as ae:
print(" \x1b[1;31m✗\x1b[0m {}{}".format(test_name,
('\n [Assertion] {}'.format(ae.args[0])) if len(ae.args) > 0
else ''))
traceback.print_exc()
failed = True
except Exception as e:

View File

@ -3,6 +3,7 @@ import json
from ..knowledge_base import KnowledgeBase
from ..modifiable_property import is_modifiable_property
from ..utils.tokenization import train_basic_tokenization
examples = [
{
@ -107,6 +108,9 @@ base_knowledge = {
'swim': {
"groups": {'verb'},
},
'planet': {
'groups': {'noun'}
}
}
def test_assumption(expectedResponse, knowledge, query):
@ -125,6 +129,8 @@ def main():
knowledge=base_knowledge,
)
train_basic_tokenization(knowledge)
for example in examples:
with session().log(example['text']):
differences = knowledge.train([example])

View File

@ -2,6 +2,7 @@ from ..session.org_mode import global_session as session
from ..knowledge_base import KnowledgeBase
from ..utils.visuals import show_progbar
from ..visualization import show_knowledge
from ..utils.tokenization import train_basic_tokenization
def _assert(args):
assert(args)
@ -667,6 +668,10 @@ base_knowledge = {
'electricity': {
"groups": {'power'},
},
'airplanes': {},
'white': {
'groups': {'property'},
}
}
def main():
@ -674,6 +679,8 @@ def main():
knowledge=base_knowledge,
)
train_basic_tokenization(knowledge)
total = len(examples)
for i, (example_type, data) in enumerate(examples):

View File

@ -22,4 +22,5 @@ def ask_then_learn_test(knowledge: KnowledgeBase):
def main():
knowledge = gac_100.main()
knowledge.knowledge['blue'] = {'groups': {'property'}}
knowledge = ask_then_learn_test(knowledge)

View File

@ -0,0 +1,80 @@
from ..session.org_mode import global_session as session
from ..knowledge_base import KnowledgeBase
from ..utils.visuals import show_progbar
from ..visualization import show_knowledge
def _assert(args):
assert(args)
def _assert_msg(args, msg):
assert args, msg
EXAMPLES = [
('example', {
"text": 'cat',
"tokens": ['cat'],
}),
('example', {
"text": 'cats',
"tokens": ['cats'],
"meaning": { 'cats': ('add-modifier', 'cat', 'plural') },
}),
('example', {
"text": 'text separated by spaces',
"tokens": ['text', 'separated', 'by', 'spaces'],
}),
('example', {
"text": 'is earth a planet?',
"tokens": ['is', 'earth', 'a', 'planet', '?'],
}),
('test', {
"text": 'plane',
"tokens": ['plane'],
}),
# ('test', {
# "text": 'planes',
# "tokens": ['planes'],
# "meaning": { 'planes': ('add-modifier', 'plane', 'plural') },
# }),
('test', {
"text": 'some other text',
"tokens": ['some', 'other', 'text'],
}),
('test', {
"text": 'is the sun a star?',
"tokens": ['is', 'the', 'sun', 'a', 'star', '?'],
}),
('test', {
"text": 'sometextnotseparatedbyspaces',
"tokens": ['some', 'text', 'not', 'separated', 'by', 'spaces'],
})
]
def main():
knowledge = KnowledgeBase()
total = len(EXAMPLES)
for i, (case_type, example) in enumerate(EXAMPLES):
show_progbar(i, total, example['text'])
if case_type == 'example':
with session().log(example['text']):
knowledge.train_tokenizer(example)
elif case_type == 'test':
with session().log(example['text']):
tokens = list(knowledge.tokenize(example['text']))
session().log('Expected “{}”, found “{}'
.format(example['tokens'], tokens))
assert example['tokens'] == tokens
else:
raise Exception('Not implemented case {}'.format(case_type))
print("\r\x1b[K", end='')
return knowledge

View File

@ -0,0 +1,186 @@
from .session.org_mode import global_session as session
from .atoms import Atom, a, is_atom
def lookahead_for_tokens_or_strucutral_elements(knowledge_base, remaining):
for se in knowledge_base.structural_elements:
found_position = remaining.find(se)
found = found_position >= 0
session().annotate('Looking for structure with “{}”, found? {}'.format(se, found))
if found:
return [
(remaining[:found_position], se, remaining[found_position + len(se):])
]
for token in knowledge_base.knowledge.keys():
found_position = remaining.find(token)
found = found_position >= 0
session().annotate('Looking for token “{}”, found? {}'.format(token, found))
if found:
return [
(remaining[:found_position], token, remaining[found_position + len(token):])
]
return None
def to_tokens(knowledge_base, text, precedent=None):
if len(text) == 0:
session().annotate("No text remaining")
yield ['']
return
with session().log("Tokenizing {}".format(text)):
for option in knowledge_base.expected_token_after_precedent(precedent):
with session().log("Next: “{}".format(option)):
with session().log("Matching “{}” on “{}".format(option, text)):
for token_match in tokenization_match(option, text, knowledge_base):
if token_match is None:
session().annotate("No match")
match, remaining = token_match
if len(remaining) == len(text):
raise Exception('No text consumed in match')
session().annotate('Match: “{}'.format(match))
with session().log('Remaining “{}'.format(remaining)):
for sublevel in to_tokens(knowledge_base, remaining, match):
candidate = list(filter(lambda x: x != '', [match] + sublevel))
session().annotate('Yielding candidate “{}'.format(candidate))
yield candidate
def tokenization_match(element, text, knowledge_base):
# Constant/structural string matching
if isinstance(element, str):
if text.find(element) == 0:
# This match comes from a structuring element
# It doesn't appear on the tokenization
# So we should return it as an empty string
yield ('', text[len(element):])
return
else:
# No match found
return
elif is_atom(element, 'token'):
yield from match_single_token(text, knowledge_base)
return
raise NotImplementedError()
def match_single_token(text, knowledge_base):
found_token = False
for token in knowledge_base.knowledge.keys():
if text.find(token) == 0:
yield token, text[len(token):]
found_token = True
if found_token:
return
session().annotate('No token found at the start of ”{}'.format(text))
session().annotate('using structural elements to infer it')
# TODO: review this when multiple structural elements are available
for se in knowledge_base.structural_elements:
session().annotate('Looking for se “{}” in “{}'.format(se, text))
position = text.find(se, 0)
found = position > 0 # 0 is not considered a valid position for this kind of split
if found:
session().annotate('Found ”{}”, inferring “{}'.format(se, text[:position]))
yield text[:position], text[position:]
session().annotate('No structural element or token found, inferring only token remaining')
yield text, ''
# Using other tokens for cutoff
for token in knowledge_base.knowledge.keys():
session().annotate('Looking for token “{}” in “{}'.format(token, text))
position = text.find(token)
found = position >= 0
if found:
session().annotate('Found ”{}”, in position ”{}'.format(token, position))
yield text[:position], text[position:]
def integrate_tokenization(knowledge_base, example):
text = example['text']
tokens = example['tokens']
meaning = example.get('meaning')
return integrate_token_to_text_matching(knowledge_base, text, tokens)
def integrate_token_to_text_matching(knowledge_base, text, tokens):
texts = [text]
# Convert to tokens
for token_id, token in enumerate(tokens):
# Look for token in texts
for i, text in enumerate(texts):
if isinstance(text, int):
continue
if token in text:
before, after = text.split(token, maxsplit=1)
texts = (texts[:i] + [before]
+ [a('token')]
+ [after] + texts[i + 1:])
break
else:
raise Exception('Token not found')
# Remove leftovers from splits
texts = list(filter(lambda x: x != '', texts))
session().log("Tokenized as {} over {}".format(texts, tokens))
for i, element in enumerate(texts[:-1]):
learn_token_pair(element, texts[i + 1], knowledge_base)
return tokens
def learn_token_pair(precedent, consequent, knowledge_base):
knowledge_base.add_token_pair(precedent, consequent)
def pick_one_tokenization(options, knowledge_base):
'''
Heuristic function to pick the most probable tokenization.
Just pick the one with more results.
'''
options = list(options)
with session().log("Picking among: {} options".format(len(options))):
session().log("Options: \n{}".format('\n'.join(map(str, options))))
return pick_by_score(options,
[
# By number of splits without structuring elements
lambda tokenization: sum(map(
lambda split: sum(map(
lambda se: se in split, knowledge_base.structural_elements
)), tokenization)),
# By number of unknown tokens
lambda tokenization: len(list(filter(lambda token:
(token not in knowledge_base.knowledge.keys()) and
(token not in knowledge_base.structural_elements),
tokenization))),
# By number of splits
lambda tokenization: -len(tokenization),
])
def pick_by_score(options, heuristics):
for heuristic in heuristics:
assert(len(options) > 0)
options = list(map(lambda opt: (heuristic(opt), opt), options))
sorted_options = sorted(options, key=lambda x: x[0], reverse=False)
heuristic_cutoff = sorted_options[0][0]
session().annotate(sorted_options)
pass_heuristic = [opt for (score, opt) in sorted_options if score <= heuristic_cutoff]
options = pass_heuristic
session().log("{} finalists: \n{}".format(len(options), '\n'.join(map(str, options))))
return options[0]

View File

@ -0,0 +1,29 @@
from ..session.org_mode import (
global_session as session,
)
BASIC_TOKENIZATION_EXAMPLES = (
({
"text": 'cat',
"tokens": ['cat'],
}),
({
"text": 'cats',
"tokens": ['cats'],
"meaning": { 'cats': ('add-modifier', 'cat', 'plural') },
}),
({
"text": 'text separated by spaces',
"tokens": ['text', 'separated', 'by', 'spaces'],
}),
({
"text": 'is earth a planet?',
"tokens": ['is', 'earth', 'a', 'planet', '?'],
}),
)
def train_basic_tokenization(knowledge_base):
with session().log('Training basic tokenization'):
for example in BASIC_TOKENIZATION_EXAMPLES:
knowledge_base.train_tokenizer(example)