Separate tokenization module.
This commit is contained in:
parent
1306306723
commit
8b67b96d2f
@ -5,6 +5,7 @@ from .session.org_mode import global_session as session
|
||||
|
||||
from .atoms import Atom
|
||||
from . import parsing
|
||||
from . import tokenization
|
||||
from . import knowledge_evaluation
|
||||
from .modifiable_property import is_modifiable_property
|
||||
import random
|
||||
@ -63,7 +64,7 @@ class KnowledgeBase(object):
|
||||
def train_tokenizer(self, example):
|
||||
with session().log('Training tokenizer'):
|
||||
session().annotate("Example: {}".format(example))
|
||||
tokens = parsing.integrate_tokenization(self, example)
|
||||
tokens = tokenization.integrate_tokenization(self, example)
|
||||
|
||||
# Integrate knowledge of concept
|
||||
for token in tokens:
|
||||
@ -115,11 +116,11 @@ class KnowledgeBase(object):
|
||||
def tokenize(self, row, return_one=True):
|
||||
row = row.lower()
|
||||
with session().log("Tokenize: {}".format(row)):
|
||||
options = list(parsing.to_tokens(self, row))
|
||||
options = list(tokenization.to_tokens(self, row))
|
||||
session().log("Results:\n{}".format('\n'.join(map(str, options))))
|
||||
|
||||
if return_one:
|
||||
chosen = parsing.pick_one_tokenization(options, self)
|
||||
chosen = tokenization.pick_one_tokenization(options, self)
|
||||
session().log("Chosen: “{}”".format(chosen))
|
||||
self.train_tokenizer({'text': row, 'tokens': chosen})
|
||||
return chosen
|
||||
|
@ -1,6 +1,7 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
from . import knowledge_evaluation
|
||||
from . import tokenization
|
||||
|
||||
from . import depth_meter
|
||||
from .session.org_mode import global_session as session
|
||||
@ -13,190 +14,6 @@ from .modifiable_property import ModifiableProperty
|
||||
from . import parameters
|
||||
from .atoms import Atom, a, is_atom
|
||||
|
||||
def lookahead_for_tokens_or_strucutral_elements(knowledge_base, remaining):
|
||||
for se in knowledge_base.structural_elements:
|
||||
found_position = remaining.find(se)
|
||||
found = found_position >= 0
|
||||
session().annotate('Looking for structure with “{}”, found? {}'.format(se, found))
|
||||
if found:
|
||||
return [
|
||||
(remaining[:found_position], se, remaining[found_position + len(se):])
|
||||
]
|
||||
|
||||
for token in knowledge_base.knowledge.keys():
|
||||
found_position = remaining.find(token)
|
||||
found = found_position >= 0
|
||||
session().annotate('Looking for token “{}”, found? {}'.format(token, found))
|
||||
if found:
|
||||
return [
|
||||
(remaining[:found_position], token, remaining[found_position + len(token):])
|
||||
]
|
||||
|
||||
return None
|
||||
|
||||
|
||||
|
||||
def to_tokens(knowledge_base, text, precedent=None):
|
||||
if len(text) == 0:
|
||||
session().annotate("No text remaining")
|
||||
yield ['']
|
||||
return
|
||||
|
||||
with session().log("Tokenizing {}".format(text)):
|
||||
for option in knowledge_base.expected_token_after_precedent(precedent):
|
||||
with session().log("Next: “{}”".format(option)):
|
||||
with session().log("Matching “{}” on “{}”".format(option, text)):
|
||||
for token_match in tokenization_match(option, text, knowledge_base):
|
||||
if token_match is None:
|
||||
session().annotate("No match")
|
||||
|
||||
match, remaining = token_match
|
||||
if len(remaining) == len(text):
|
||||
raise Exception('No text consumed in match')
|
||||
|
||||
session().annotate('Match: “{}”'.format(match))
|
||||
with session().log('Remaining “{}”'.format(remaining)):
|
||||
for sublevel in to_tokens(knowledge_base, remaining, match):
|
||||
candidate = list(filter(lambda x: x != '', [match] + sublevel))
|
||||
session().annotate('Yielding candidate “{}”'.format(candidate))
|
||||
yield candidate
|
||||
|
||||
|
||||
def tokenization_match(element, text, knowledge_base):
|
||||
# Constant/structural string matching
|
||||
if isinstance(element, str):
|
||||
if text.find(element) == 0:
|
||||
# This match comes from a structuring element
|
||||
# It doesn't appear on the tokenization
|
||||
# So we should return it as an empty string
|
||||
yield ('', text[len(element):])
|
||||
return
|
||||
else:
|
||||
# No match found
|
||||
return
|
||||
|
||||
elif is_atom(element, 'token'):
|
||||
yield from match_single_token(text, knowledge_base)
|
||||
return
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
def match_single_token(text, knowledge_base):
|
||||
found_token = False
|
||||
for token in knowledge_base.knowledge.keys():
|
||||
if text.find(token) == 0:
|
||||
yield token, text[len(token):]
|
||||
found_token = True
|
||||
|
||||
if found_token:
|
||||
return
|
||||
|
||||
session().annotate('No token found at the start of ”{}”'.format(text))
|
||||
session().annotate('using structural elements to infer it')
|
||||
# TODO: review this when multiple structural elements are available
|
||||
for se in knowledge_base.structural_elements:
|
||||
session().annotate('Looking for se “{}” in “{}”'.format(se, text))
|
||||
position = text.find(se, 0)
|
||||
found = position > 0 # 0 is not considered a valid position for this kind of split
|
||||
if found:
|
||||
session().annotate('Found ”{}”, inferring “{}”'.format(se, text[:position]))
|
||||
yield text[:position], text[position:]
|
||||
|
||||
session().annotate('No structural element or token found, inferring only token remaining')
|
||||
yield text, ''
|
||||
|
||||
# Using other tokens for cutoff
|
||||
for token in knowledge_base.knowledge.keys():
|
||||
session().annotate('Looking for token “{}” in “{}”'.format(token, text))
|
||||
position = text.find(token)
|
||||
found = position >= 0
|
||||
if found:
|
||||
session().annotate('Found ”{}”, in position ”{}”'.format(token, position))
|
||||
yield text[:position], text[position:]
|
||||
|
||||
|
||||
def integrate_tokenization(knowledge_base, example):
|
||||
text = example['text']
|
||||
tokens = example['tokens']
|
||||
meaning = example.get('meaning')
|
||||
|
||||
return integrate_token_to_text_matching(knowledge_base, text, tokens)
|
||||
|
||||
|
||||
def integrate_token_to_text_matching(knowledge_base, text, tokens):
|
||||
texts = [text]
|
||||
|
||||
# Convert to tokens
|
||||
for token_id, token in enumerate(tokens):
|
||||
# Look for token in texts
|
||||
for i, text in enumerate(texts):
|
||||
if isinstance(text, int):
|
||||
continue
|
||||
|
||||
if token in text:
|
||||
before, after = text.split(token, maxsplit=1)
|
||||
texts = (texts[:i] + [before]
|
||||
+ [a('token')]
|
||||
+ [after] + texts[i + 1:])
|
||||
break
|
||||
else:
|
||||
raise Exception('Token not found')
|
||||
|
||||
# Remove leftovers from splits
|
||||
texts = list(filter(lambda x: x != '', texts))
|
||||
session().log("Tokenized as {} over {}".format(texts, tokens))
|
||||
|
||||
for i, element in enumerate(texts[:-1]):
|
||||
learn_token_pair(element, texts[i + 1], knowledge_base)
|
||||
|
||||
return tokens
|
||||
|
||||
def learn_token_pair(precedent, consequent, knowledge_base):
|
||||
knowledge_base.add_token_pair(precedent, consequent)
|
||||
|
||||
|
||||
def pick_one_tokenization(options, knowledge_base):
|
||||
'''
|
||||
Heuristic function to pick the most probable tokenization.
|
||||
|
||||
Just pick the one with more results.
|
||||
'''
|
||||
options = list(options)
|
||||
with session().log("Picking among: {} options".format(len(options))):
|
||||
session().log("Options: \n{}".format('\n'.join(map(str, options))))
|
||||
return pick_by_score(options,
|
||||
[
|
||||
# By number of splits without structuring elements
|
||||
lambda tokenization: sum(map(
|
||||
lambda split: sum(map(
|
||||
lambda se: se in split, knowledge_base.structural_elements
|
||||
)), tokenization)),
|
||||
|
||||
# By number of unknown tokens
|
||||
lambda tokenization: len(list(filter(lambda token:
|
||||
(token not in knowledge_base.knowledge.keys()) and
|
||||
(token not in knowledge_base.structural_elements),
|
||||
tokenization))),
|
||||
|
||||
# By number of splits
|
||||
lambda tokenization: -len(tokenization),
|
||||
])
|
||||
|
||||
def pick_by_score(options, heuristics):
|
||||
for heuristic in heuristics:
|
||||
assert(len(options) > 0)
|
||||
options = list(map(lambda opt: (heuristic(opt), opt), options))
|
||||
sorted_options = sorted(options, key=lambda x: x[0], reverse=False)
|
||||
|
||||
heuristic_cutoff = sorted_options[0][0]
|
||||
session().annotate(sorted_options)
|
||||
pass_heuristic = [opt for (score, opt) in sorted_options if score <= heuristic_cutoff]
|
||||
options = pass_heuristic
|
||||
|
||||
session().log("{} finalists: \n{}".format(len(options), '\n'.join(map(str, options))))
|
||||
return options[0]
|
||||
|
||||
|
||||
def make_template(knowledge_base, tokens, parsed):
|
||||
matcher = list(tokens)
|
||||
template = list(parsed)
|
||||
@ -267,7 +84,7 @@ def integrate_language(knowledge_base, example):
|
||||
parsed = example["parsed"]
|
||||
|
||||
resolved_parsed = copy.deepcopy(parsed)
|
||||
tokens = list(pick_one_tokenization(to_tokens(knowledge_base, text), knowledge_base))
|
||||
tokens = list(tokenization.pick_one_tokenization(tokenization.to_tokens(knowledge_base, text), knowledge_base))
|
||||
|
||||
while True:
|
||||
session().annotate("P: {}".format(resolved_parsed))
|
||||
|
186
naive-nlu/tree_nlu/tokenization.py
Normal file
186
naive-nlu/tree_nlu/tokenization.py
Normal file
@ -0,0 +1,186 @@
|
||||
from .session.org_mode import global_session as session
|
||||
from .atoms import Atom, a, is_atom
|
||||
|
||||
def lookahead_for_tokens_or_strucutral_elements(knowledge_base, remaining):
|
||||
for se in knowledge_base.structural_elements:
|
||||
found_position = remaining.find(se)
|
||||
found = found_position >= 0
|
||||
session().annotate('Looking for structure with “{}”, found? {}'.format(se, found))
|
||||
if found:
|
||||
return [
|
||||
(remaining[:found_position], se, remaining[found_position + len(se):])
|
||||
]
|
||||
|
||||
for token in knowledge_base.knowledge.keys():
|
||||
found_position = remaining.find(token)
|
||||
found = found_position >= 0
|
||||
session().annotate('Looking for token “{}”, found? {}'.format(token, found))
|
||||
if found:
|
||||
return [
|
||||
(remaining[:found_position], token, remaining[found_position + len(token):])
|
||||
]
|
||||
|
||||
return None
|
||||
|
||||
|
||||
|
||||
def to_tokens(knowledge_base, text, precedent=None):
|
||||
if len(text) == 0:
|
||||
session().annotate("No text remaining")
|
||||
yield ['']
|
||||
return
|
||||
|
||||
with session().log("Tokenizing {}".format(text)):
|
||||
for option in knowledge_base.expected_token_after_precedent(precedent):
|
||||
with session().log("Next: “{}”".format(option)):
|
||||
with session().log("Matching “{}” on “{}”".format(option, text)):
|
||||
for token_match in tokenization_match(option, text, knowledge_base):
|
||||
if token_match is None:
|
||||
session().annotate("No match")
|
||||
|
||||
match, remaining = token_match
|
||||
if len(remaining) == len(text):
|
||||
raise Exception('No text consumed in match')
|
||||
|
||||
session().annotate('Match: “{}”'.format(match))
|
||||
with session().log('Remaining “{}”'.format(remaining)):
|
||||
for sublevel in to_tokens(knowledge_base, remaining, match):
|
||||
candidate = list(filter(lambda x: x != '', [match] + sublevel))
|
||||
session().annotate('Yielding candidate “{}”'.format(candidate))
|
||||
yield candidate
|
||||
|
||||
|
||||
def tokenization_match(element, text, knowledge_base):
|
||||
# Constant/structural string matching
|
||||
if isinstance(element, str):
|
||||
if text.find(element) == 0:
|
||||
# This match comes from a structuring element
|
||||
# It doesn't appear on the tokenization
|
||||
# So we should return it as an empty string
|
||||
yield ('', text[len(element):])
|
||||
return
|
||||
else:
|
||||
# No match found
|
||||
return
|
||||
|
||||
elif is_atom(element, 'token'):
|
||||
yield from match_single_token(text, knowledge_base)
|
||||
return
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
def match_single_token(text, knowledge_base):
|
||||
found_token = False
|
||||
for token in knowledge_base.knowledge.keys():
|
||||
if text.find(token) == 0:
|
||||
yield token, text[len(token):]
|
||||
found_token = True
|
||||
|
||||
if found_token:
|
||||
return
|
||||
|
||||
session().annotate('No token found at the start of ”{}”'.format(text))
|
||||
session().annotate('using structural elements to infer it')
|
||||
# TODO: review this when multiple structural elements are available
|
||||
for se in knowledge_base.structural_elements:
|
||||
session().annotate('Looking for se “{}” in “{}”'.format(se, text))
|
||||
position = text.find(se, 0)
|
||||
found = position > 0 # 0 is not considered a valid position for this kind of split
|
||||
if found:
|
||||
session().annotate('Found ”{}”, inferring “{}”'.format(se, text[:position]))
|
||||
yield text[:position], text[position:]
|
||||
|
||||
session().annotate('No structural element or token found, inferring only token remaining')
|
||||
yield text, ''
|
||||
|
||||
# Using other tokens for cutoff
|
||||
for token in knowledge_base.knowledge.keys():
|
||||
session().annotate('Looking for token “{}” in “{}”'.format(token, text))
|
||||
position = text.find(token)
|
||||
found = position >= 0
|
||||
if found:
|
||||
session().annotate('Found ”{}”, in position ”{}”'.format(token, position))
|
||||
yield text[:position], text[position:]
|
||||
|
||||
|
||||
def integrate_tokenization(knowledge_base, example):
|
||||
text = example['text']
|
||||
tokens = example['tokens']
|
||||
meaning = example.get('meaning')
|
||||
|
||||
return integrate_token_to_text_matching(knowledge_base, text, tokens)
|
||||
|
||||
|
||||
def integrate_token_to_text_matching(knowledge_base, text, tokens):
|
||||
texts = [text]
|
||||
|
||||
# Convert to tokens
|
||||
for token_id, token in enumerate(tokens):
|
||||
# Look for token in texts
|
||||
for i, text in enumerate(texts):
|
||||
if isinstance(text, int):
|
||||
continue
|
||||
|
||||
if token in text:
|
||||
before, after = text.split(token, maxsplit=1)
|
||||
texts = (texts[:i] + [before]
|
||||
+ [a('token')]
|
||||
+ [after] + texts[i + 1:])
|
||||
break
|
||||
else:
|
||||
raise Exception('Token not found')
|
||||
|
||||
# Remove leftovers from splits
|
||||
texts = list(filter(lambda x: x != '', texts))
|
||||
session().log("Tokenized as {} over {}".format(texts, tokens))
|
||||
|
||||
for i, element in enumerate(texts[:-1]):
|
||||
learn_token_pair(element, texts[i + 1], knowledge_base)
|
||||
|
||||
return tokens
|
||||
|
||||
def learn_token_pair(precedent, consequent, knowledge_base):
|
||||
knowledge_base.add_token_pair(precedent, consequent)
|
||||
|
||||
|
||||
def pick_one_tokenization(options, knowledge_base):
|
||||
'''
|
||||
Heuristic function to pick the most probable tokenization.
|
||||
|
||||
Just pick the one with more results.
|
||||
'''
|
||||
options = list(options)
|
||||
with session().log("Picking among: {} options".format(len(options))):
|
||||
session().log("Options: \n{}".format('\n'.join(map(str, options))))
|
||||
return pick_by_score(options,
|
||||
[
|
||||
# By number of splits without structuring elements
|
||||
lambda tokenization: sum(map(
|
||||
lambda split: sum(map(
|
||||
lambda se: se in split, knowledge_base.structural_elements
|
||||
)), tokenization)),
|
||||
|
||||
# By number of unknown tokens
|
||||
lambda tokenization: len(list(filter(lambda token:
|
||||
(token not in knowledge_base.knowledge.keys()) and
|
||||
(token not in knowledge_base.structural_elements),
|
||||
tokenization))),
|
||||
|
||||
# By number of splits
|
||||
lambda tokenization: -len(tokenization),
|
||||
])
|
||||
|
||||
def pick_by_score(options, heuristics):
|
||||
for heuristic in heuristics:
|
||||
assert(len(options) > 0)
|
||||
options = list(map(lambda opt: (heuristic(opt), opt), options))
|
||||
sorted_options = sorted(options, key=lambda x: x[0], reverse=False)
|
||||
|
||||
heuristic_cutoff = sorted_options[0][0]
|
||||
session().annotate(sorted_options)
|
||||
pass_heuristic = [opt for (score, opt) in sorted_options if score <= heuristic_cutoff]
|
||||
options = pass_heuristic
|
||||
|
||||
session().log("{} finalists: \n{}".format(len(options), '\n'.join(map(str, options))))
|
||||
return options[0]
|
||||
|
Loading…
Reference in New Issue
Block a user