Exploration of layers for tokenization and parsing.
This commit is contained in:
parent
c18c9b8cb1
commit
a444766c7c
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,5 +1,6 @@
|
||||
*#*
|
||||
*~
|
||||
.vscode
|
||||
*.ba?k
|
||||
*.pyc
|
||||
__pycache__
|
||||
|
@ -4,8 +4,7 @@ import logging
|
||||
from .session.org_mode import global_session as session
|
||||
|
||||
from .atoms import Atom
|
||||
from . import parsing
|
||||
from . import tokenization
|
||||
from . import layered_model
|
||||
from . import knowledge_evaluation
|
||||
from .modifiable_property import is_modifiable_property
|
||||
import random
|
||||
@ -15,21 +14,6 @@ def diff_knowledge(before, after):
|
||||
return jsondiff.diff(before, after)
|
||||
|
||||
|
||||
def randomized_weighted_list(elements):
|
||||
# Randomized
|
||||
randomized = list(elements)
|
||||
random.shuffle(randomized)
|
||||
|
||||
# And return only once
|
||||
already_returned = set()
|
||||
for e in randomized:
|
||||
if e in already_returned:
|
||||
continue
|
||||
|
||||
yield e
|
||||
already_returned.add(e)
|
||||
|
||||
|
||||
|
||||
class KnowledgeBase(object):
|
||||
def __init__(self, knowledge={}, examples=[], trained=[]):
|
||||
@ -37,41 +21,9 @@ class KnowledgeBase(object):
|
||||
self.originals = []
|
||||
self.examples = copy.copy(examples)
|
||||
self.trained = copy.copy(trained)
|
||||
self.structural_elements = set()
|
||||
self.token_chains = {}
|
||||
self.tokens = set()
|
||||
|
||||
def add_token_pair(self, precedent, consequent):
|
||||
self.add_token(precedent)
|
||||
self.add_token(consequent)
|
||||
|
||||
if precedent not in self.token_chains:
|
||||
self.token_chains[precedent] = []
|
||||
self.token_chains[precedent].append(consequent)
|
||||
|
||||
def add_token(self, token):
|
||||
self.tokens.add(token)
|
||||
if (not isinstance(token, Atom)) and (token not in self.structural_elements):
|
||||
session().annotate('Found new structural element “{}”'.format(token))
|
||||
self.structural_elements.add(token)
|
||||
|
||||
def expected_token_after_precedent(self, precedent=None):
|
||||
if precedent not in self.token_chains: # If there's no known precedent, just return all tokens
|
||||
return randomized_weighted_list(self.tokens)
|
||||
|
||||
return randomized_weighted_list(self.token_chains[precedent])
|
||||
|
||||
def train_tokenizer(self, example):
|
||||
with session().log('Training tokenizer'):
|
||||
session().annotate("Example: {}".format(example))
|
||||
tokens = tokenization.integrate_tokenization(self, example)
|
||||
|
||||
# Integrate knowledge of concept
|
||||
for token in tokens:
|
||||
if not token in self.knowledge:
|
||||
self.knowledge[token] = {}
|
||||
|
||||
self.layers = layered_model.BaseModel(self)
|
||||
|
||||
## Parsing
|
||||
def train(self, examples):
|
||||
knowledge_before = copy.deepcopy(self.knowledge)
|
||||
with session().log('Train'):
|
||||
@ -86,11 +38,12 @@ class KnowledgeBase(object):
|
||||
self.act_upon(result)
|
||||
|
||||
with session().log("language integration"):
|
||||
tokens, decomposition, inferred_tree = parsing.integrate_language(self, example)
|
||||
session().annotate("Tokens: {}".format(tokens))
|
||||
session().annotate("Inferred tree: {}".format(inferred_tree))
|
||||
for tokens, decomposition, inferred_tree in self.layers.integrate(self, example):
|
||||
session().annotate("Tokens: {}".format(tokens))
|
||||
session().annotate("Inferred tree: {}".format(inferred_tree))
|
||||
|
||||
with session().log("full information integration"):
|
||||
tokens = self.layers.tokenization.tokenize(example['text'], return_one=True)
|
||||
result = knowledge_evaluation.integrate_information(self.knowledge, {
|
||||
"elements": tokens,
|
||||
"decomposition": decomposition,
|
||||
@ -105,7 +58,7 @@ class KnowledgeBase(object):
|
||||
|
||||
# Reduce values
|
||||
with session().log("reprocessing"):
|
||||
self.trained = parsing.reprocess_language_knowledge(self, self.examples)
|
||||
self.layers.reprocess(self.examples)
|
||||
|
||||
knowledge_after = copy.deepcopy(self.knowledge)
|
||||
knowledge_diff_getter = lambda: diff_knowledge(knowledge_before,
|
||||
@ -113,19 +66,6 @@ class KnowledgeBase(object):
|
||||
|
||||
return knowledge_diff_getter
|
||||
|
||||
def tokenize(self, row, return_one=True):
|
||||
row = row.lower()
|
||||
with session().log("Tokenize: {}".format(row)):
|
||||
options = list(tokenization.to_tokens(self, row))
|
||||
session().log("Results:\n{}".format('\n'.join(map(str, options))))
|
||||
|
||||
if return_one:
|
||||
chosen = tokenization.pick_one_tokenization(options, self)
|
||||
session().log("Chosen: “{}”".format(chosen))
|
||||
self.train_tokenizer({'text': row, 'tokens': chosen})
|
||||
return chosen
|
||||
return options
|
||||
|
||||
def process(self, row):
|
||||
knowledge_before = copy.deepcopy(self.knowledge)
|
||||
with session().log("Process: {}".format(row)):
|
||||
|
47
naive-nlu/tree_nlu/layered_model.py
Normal file
47
naive-nlu/tree_nlu/layered_model.py
Normal file
@ -0,0 +1,47 @@
|
||||
from .layers import tokenization_layer
|
||||
from .layers import parsing_layer
|
||||
|
||||
|
||||
def make_yield_pipe(layers, knowledge_base, example):
|
||||
if len(layers) < 1:
|
||||
yield example
|
||||
return
|
||||
|
||||
input_generator = make_yield_pipe(layers[:-1], knowledge_base, example)
|
||||
for input in input_generator:
|
||||
print("-->", input)
|
||||
for d in list(layers[-1].integrate(knowledge_base, input)):
|
||||
yield d
|
||||
|
||||
|
||||
class BaseModel:
|
||||
def __init__(self, knowledge_base):
|
||||
self.tokenization = tokenization_layer.TokenizationLayer(knowledge_base)
|
||||
self.parsing = parsing_layer.ParsingLayer()
|
||||
|
||||
self.layers = [
|
||||
self.tokenization,
|
||||
self.parsing,
|
||||
]
|
||||
|
||||
def reprocess(self, examples):
|
||||
for example in examples:
|
||||
self._reprocess_single(example)
|
||||
|
||||
def _reprocess_single(self, example):
|
||||
return
|
||||
pattern_examples = []
|
||||
for i, sample in enumerate(examples):
|
||||
other = examples[:i] + examples[i + 1:]
|
||||
match = get_matching(sample, other)
|
||||
if len(match) > 0:
|
||||
sample = (match, sample[1],)
|
||||
pattern_examples.append(sample)
|
||||
|
||||
return pattern_examples
|
||||
|
||||
def integrate(self, knowledge_base, example):
|
||||
yield from make_yield_pipe(self.layers, knowledge_base, example)
|
||||
|
||||
def tokenize(self, row, return_one=True):
|
||||
return self.tokenization.to_tokens(row)
|
@ -1,18 +1,14 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
from . import knowledge_evaluation
|
||||
from . import tokenization
|
||||
|
||||
from . import depth_meter
|
||||
from .session.org_mode import global_session as session
|
||||
from ..session.org_mode import global_session as session
|
||||
import re
|
||||
import copy
|
||||
|
||||
from functools import reduce
|
||||
from typing import List, Dict
|
||||
from .modifiable_property import ModifiableProperty
|
||||
from . import parameters
|
||||
from .atoms import Atom, a, is_atom
|
||||
from ..modifiable_property import ModifiableProperty
|
||||
from .. import parameters
|
||||
from ..atoms import Atom, a, is_atom
|
||||
|
||||
def make_template(knowledge_base, tokens, parsed):
|
||||
matcher = list(tokens)
|
||||
@ -83,8 +79,8 @@ def integrate_language(knowledge_base, example):
|
||||
text = example["text"].lower()
|
||||
parsed = example["parsed"]
|
||||
|
||||
tokens = example['tokens']
|
||||
resolved_parsed = copy.deepcopy(parsed)
|
||||
tokens = list(tokenization.pick_one_tokenization(tokenization.to_tokens(knowledge_base, text), knowledge_base))
|
||||
|
||||
while True:
|
||||
session().annotate("P: {}".format(resolved_parsed))
|
||||
@ -95,14 +91,14 @@ def integrate_language(knowledge_base, example):
|
||||
|
||||
for position, atom in lower_levels:
|
||||
with session().log("Atom {}".format(atom)):
|
||||
result = None
|
||||
similars = get_similar_tree(knowledge_base, atom, tokens)
|
||||
for similar in similars:
|
||||
result = build_remix_matrix(knowledge_base, tokens, atom, similar)
|
||||
if result is not None:
|
||||
break
|
||||
|
||||
if result is None:
|
||||
raise Exception("No match found")
|
||||
return
|
||||
remix, (start_bounds, end_bounds) = result
|
||||
|
||||
after_remix = apply_remix(tokens[len(start_bounds):-len(end_bounds)], remix)
|
||||
@ -147,7 +143,7 @@ def integrate_language(knowledge_base, example):
|
||||
session().annotate("M: {}".format(matcher))
|
||||
session().annotate("R: {}".format(result))
|
||||
session().annotate("---")
|
||||
return tokens, matcher, result
|
||||
yield tokens, matcher, result
|
||||
|
||||
|
||||
def apply_remix(tokens, remix):
|
||||
@ -319,7 +315,7 @@ def get_similar_tree(knowledge_base, atom, tokens):
|
||||
|
||||
sorted_possibilities = sorted(sorted_possibilities, key=lambda p: p[3] * 100 + p[4], reverse=True)
|
||||
if len(sorted_possibilities) < 1:
|
||||
return None
|
||||
return []
|
||||
|
||||
for i, possibility in enumerate(sorted_possibilities):
|
||||
similar_matcher, similar_result, similar_result_resolved, _atom_score, _token_score = possibility
|
||||
@ -369,20 +365,6 @@ def get_matching(sample, other):
|
||||
return matching
|
||||
|
||||
|
||||
def reprocess_language_knowledge(knowledge_base, examples):
|
||||
examples = knowledge_base.examples + examples
|
||||
|
||||
pattern_examples = []
|
||||
for i, sample in enumerate(examples):
|
||||
other = examples[:i] + examples[i + 1:]
|
||||
match = get_matching(sample, other)
|
||||
if len(match) > 0:
|
||||
sample = (match, sample[1],)
|
||||
pattern_examples.append(sample)
|
||||
|
||||
return pattern_examples
|
||||
|
||||
|
||||
def reverse_remix(tree_section, remix):
|
||||
result_section = []
|
||||
offset = 0
|
11
naive-nlu/tree_nlu/layers/parsing_layer.py
Normal file
11
naive-nlu/tree_nlu/layers/parsing_layer.py
Normal file
@ -0,0 +1,11 @@
|
||||
from . import parsing
|
||||
|
||||
class ParsingLayer:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def integrate(self, knowledge_base, example):
|
||||
yield from parsing.integrate_language(knowledge_base, example)
|
||||
|
||||
def train(self, knowledge_base, example):
|
||||
assert False
|
@ -1,5 +1,5 @@
|
||||
from .session.org_mode import global_session as session
|
||||
from .atoms import Atom, a, is_atom
|
||||
from ..session.org_mode import global_session as session
|
||||
from ..atoms import Atom, a, is_atom
|
||||
|
||||
def lookahead_for_tokens_or_strucutral_elements(knowledge_base, remaining):
|
||||
for se in knowledge_base.structural_elements:
|
84
naive-nlu/tree_nlu/layers/tokenization_layer.py
Normal file
84
naive-nlu/tree_nlu/layers/tokenization_layer.py
Normal file
@ -0,0 +1,84 @@
|
||||
from ..session.org_mode import global_session as session
|
||||
from ..atoms import Atom
|
||||
from . import tokenization
|
||||
import random
|
||||
import copy
|
||||
|
||||
def randomized_weighted_list(elements):
|
||||
# Randomized
|
||||
randomized = list(elements)
|
||||
random.shuffle(randomized)
|
||||
|
||||
# And return only once
|
||||
already_returned = set()
|
||||
for e in randomized:
|
||||
if e in already_returned:
|
||||
continue
|
||||
|
||||
yield e
|
||||
already_returned.add(e)
|
||||
|
||||
class TokenizationLayer:
|
||||
def __init__(self, knowledge_base):
|
||||
self.structural_elements = set()
|
||||
self.token_chains = {}
|
||||
self.tokens = set()
|
||||
self.knowledge_base = knowledge_base
|
||||
self.knowledge = knowledge_base.knowledge
|
||||
|
||||
def integrate(self, knowledge_base, data):
|
||||
assert knowledge_base is self.knowledge_base
|
||||
|
||||
print(data)
|
||||
assert 'text' in data
|
||||
with session().log("Tokenize: {}".format(data['text'])):
|
||||
for tokens in tokenization.to_tokens(self, data['text']):
|
||||
data_with_row = copy.copy(data)
|
||||
data_with_row['tokens'] = tokens
|
||||
print(data_with_row)
|
||||
yield data_with_row
|
||||
|
||||
|
||||
def tokenize(self, row, return_one=True):
|
||||
row = row.lower()
|
||||
with session().log("Tokenize: {}".format(row)):
|
||||
options = list(tokenization.to_tokens(self, row))
|
||||
session().log("Results:\n{}".format('\n'.join(map(str, options))))
|
||||
|
||||
if return_one:
|
||||
chosen = tokenization.pick_one_tokenization(options, self)
|
||||
session().log("Chosen: “{}”".format(chosen))
|
||||
self.train({'text': row, 'tokens': chosen})
|
||||
return chosen
|
||||
return options
|
||||
|
||||
## Tokenization
|
||||
def add_token_pair(self, precedent, consequent):
|
||||
self.add_token(precedent)
|
||||
self.add_token(consequent)
|
||||
|
||||
if precedent not in self.token_chains:
|
||||
self.token_chains[precedent] = []
|
||||
self.token_chains[precedent].append(consequent)
|
||||
|
||||
def add_token(self, token):
|
||||
self.tokens.add(token)
|
||||
if (not isinstance(token, Atom)) and (token not in self.structural_elements):
|
||||
session().annotate('Found new structural element “{}”'.format(token))
|
||||
self.structural_elements.add(token)
|
||||
|
||||
def expected_token_after_precedent(self, precedent=None):
|
||||
if precedent not in self.token_chains: # If there's no known precedent, just return all tokens
|
||||
return randomized_weighted_list(self.tokens)
|
||||
|
||||
return randomized_weighted_list(self.token_chains[precedent])
|
||||
|
||||
def train(self, example):
|
||||
with session().log('Training tokenizer'):
|
||||
session().annotate("Example: {}".format(example))
|
||||
tokens = tokenization.integrate_tokenization(self, example)
|
||||
|
||||
# Integrate knowledge of concept
|
||||
for token in tokens:
|
||||
if not token in self.knowledge:
|
||||
self.knowledge[token] = {}
|
@ -99,14 +99,14 @@ examples = [
|
||||
lambda knowledge: _assert('electricity' in knowledge.knowledge['computers']['performs-over']['use'])
|
||||
),],
|
||||
}),
|
||||
('full_example',
|
||||
{
|
||||
"text": "The dominant language in france is french?",
|
||||
"affirmation": "The dominant language in france is french",
|
||||
"parsed": ("question",
|
||||
("property-has-value", "france", "dominant-language", "french")),
|
||||
"answer": True,
|
||||
}),
|
||||
# ('full_example',
|
||||
# {
|
||||
# "text": "The dominant language in france is french?",
|
||||
# "affirmation": "The dominant language in france is french",
|
||||
# "parsed": ("question",
|
||||
# ("property-has-value", "france", "dominant-language", "french")),
|
||||
# "answer": True,
|
||||
# }),
|
||||
# {
|
||||
# "text": "was abraham lincoln once president of the united states?",
|
||||
# "affirmation": "was abraham lincoln once president of the united states?",
|
||||
|
@ -63,11 +63,11 @@ def main():
|
||||
show_progbar(i, total, example['text'])
|
||||
if case_type == 'example':
|
||||
with session().log(example['text']):
|
||||
knowledge.train_tokenizer(example)
|
||||
knowledge.layers.tokenization.train(example)
|
||||
|
||||
elif case_type == 'test':
|
||||
with session().log(example['text']):
|
||||
tokens = list(knowledge.tokenize(example['text']))
|
||||
tokens = list(knowledge.layers.tokenization.tokenize(example['text']))
|
||||
|
||||
session().log('Expected “{}”, found “{}”'
|
||||
.format(example['tokens'], tokens))
|
||||
|
@ -26,4 +26,4 @@ BASIC_TOKENIZATION_EXAMPLES = (
|
||||
def train_basic_tokenization(knowledge_base):
|
||||
with session().log('Training basic tokenization'):
|
||||
for example in BASIC_TOKENIZATION_EXAMPLES:
|
||||
knowledge_base.train_tokenizer(example)
|
||||
knowledge_base.layers.tokenization.train(example)
|
||||
|
Loading…
Reference in New Issue
Block a user