Add (non-passing) tokenization.

This commit is contained in:
kenkeiras 2018-04-01 20:24:09 +02:00
parent 75174e1736
commit fc37450565
7 changed files with 229 additions and 11 deletions

View File

@ -0,0 +1,14 @@
'''
Analogous to erlang ones.
"An atom is a literal, a constant with name."
'''
from collections import namedtuple
Atom = namedtuple('Atom', field_names='name')
def a(name):
'''Build an atom with a given name.'''
return Atom(name)

View File

@ -14,11 +14,16 @@ def diff_knowledge(before, after):
class KnowledgeBase(object):
def __init__(self, knowledge, examples=[], trained=[]):
def __init__(self, knowledge={}, examples=[], trained=[]):
self.knowledge = copy.copy(knowledge)
self.originals = []
self.examples = copy.copy(examples)
self.trained = copy.copy(trained)
self.tokenization = set()
def train_tokenizer(self, example):
with session().log('Train'):
parsing.integrate_tokenization(self, example)
def train(self, examples):
knowledge_before = copy.deepcopy(self.knowledge)
@ -26,7 +31,7 @@ class KnowledgeBase(object):
# Parse everything
for example in examples:
# If there's parsed data, leverage it ASAP
if 'parsed' in example:
if 'parsed' in example and isinstance(example['parsed'], tuple):
with session().log('parsed information integration'):
result = knowledge_evaluation.integrate_information(self.knowledge, {
"parsed": example['parsed'],
@ -35,7 +40,8 @@ class KnowledgeBase(object):
with session().log("language integration"):
tokens, decomposition, inferred_tree = parsing.integrate_language(self, example)
session().annotate(tokens)
session().annotate("Tokens: {}".format(tokens))
session().annotate("Inferred tree: {}".format(inferred_tree))
with session().log("full information integration"):
result = knowledge_evaluation.integrate_information(self.knowledge, {
@ -60,11 +66,19 @@ class KnowledgeBase(object):
return knowledge_diff_getter
def process(self, row):
def tokenize(self, row, return_one=True):
row = row.lower()
with session().log("Tokenize: {}".format(row)):
options = parsing.to_tokens(self, row)
if return_one:
return parsing.pick_one_tokenization(options)
return options
def process(self, row):
knowledge_before = copy.deepcopy(self.knowledge)
with session().log("Process: {}".format(row)):
tokens = parsing.to_tokens(row)
tokens = self.tokenize(row)
fit = parsing.get_fit(self, tokens)
if fit is None:
return None

View File

@ -11,11 +11,105 @@ from functools import reduce
from typing import List, Dict
from .modifiable_property import ModifiableProperty
from . import parameters
from .atoms import Atom, a
# TODO: more flexible tokenization
def to_tokens(text):
return re.findall(r'(\w+|[^\s])', text)
def to_tokens(knowledge_base, text, acc=None):
# TODO This is an extra-naïve implementation
found = 0
for tokenization in knowledge_base.tokenization:
remaining = text
possibility = []
for i, token in enumerate(tokenization):
if token == Atom('token'):
for thing in knowledge_base.knowledge.keys():
if remaining.startswith(thing):
# TODO We should also branch here, probably :\
remaining = remaining[len(thing):]
possibility.append(thing)
else:
if i + 1 >= len(tokenization):
possibility.append(remaining)
remaining = ""
else:
# Try with (HYPERSIMPLISTIC!) backtracking
# Cut using the next token we should use more!!!
next_token = tokenization[i + 1]
cutoff = remaining.find(next_token)
if cutoff < 0:
break
possibility.append(remaining[:cutoff])
remaining = remaining[cutoff:]
else:
if remaining.find(token) < 0: # Not inmediately after!
break
remaining = remaining[len(token):]
else:
# Tokenization applicable
found += 1
if remaining == '':
yield possibility
else:
for consecuent in to_tokens(knowledge_base, remaining, possibility):
yield list(filter(lambda x: x != '', possibility + consecuent))
if found == 0:
raise Exception('No tokenization found')
def integrate_tokenization(knowledge_base, example):
text = example['text']
tokens = example['tokens']
meaning = example.get('meaning')
return integrate_token_to_text_matching(knowledge_base, text, tokens)
def integrate_token_to_text_matching(knowledge_base, text, tokens):
texts = [text]
# Convert to tokens
for token_id, token in enumerate(tokens):
# Look for token in texts
for i, text in enumerate(texts):
if isinstance(text, int):
continue
if token in text:
before, after = text.split(token, maxsplit=1)
texts = (texts[:i] + [before]
+ [token_id]
+ [after] + texts[i + 1:])
break
else:
raise Exception('Token not found')
# Remove leftovers from splits
texts = list(filter(lambda x: x != '', texts))
for token_id, _token in enumerate(tokens):
# Find all elements between current token and next token
i = texts.index(token_id)
elements = [a('token')]
i += 1
while i < len(texts) and not isinstance(texts[i], int):
elements.append(texts[i])
i += 1
knowledge_base.tokenization.add(tuple(elements))
def pick_one_tokenization(options):
'''
Heuristic function to pick the most probable tokenization.
Just pick the one with more results.
'''
return sorted(options,
key=lambda tokenization: len(tokenization),
reverse=True)[0]
def make_template(knowledge_base, tokens, parsed):
matcher = list(tokens)
@ -87,7 +181,7 @@ def integrate_language(knowledge_base, example):
parsed = example["parsed"]
resolved_parsed = copy.deepcopy(parsed)
tokens = to_tokens(text)
tokens = list(pick_one_tokenization(to_tokens(knowledge_base, text)))
while True:
session().annotate("P: {}".format(resolved_parsed))

View File

@ -1,7 +1,8 @@
import traceback
import logging
import datetime
from .session import org_mode
from .tests import tokenization
from .tests import basic
from .tests import gac_100
from .tests import gac_extension
@ -9,6 +10,7 @@ from .tests import gac_extension
logging.getLogger().setLevel(logging.ERROR)
tests = (
("tokenization", tokenization),
("basic", basic),
("gac 100", gac_100),
("gac+", gac_extension),
@ -24,12 +26,14 @@ def main():
failed = False
for test_name, test_module in tests:
try:
test_module.main()
with org_mode.global_session().log(test_name):
test_module.main()
print(" \x1b[1;32m✓\x1b[0m {}".format(test_name))
except AssertionError as ae:
print(" \x1b[1;31m✗\x1b[0m {}{}".format(test_name,
('\n [Assertion] {}'.format(ae.args[0])) if len(ae.args) > 0
else ''))
traceback.print_exc()
failed = True
except Exception as e:

View File

@ -3,6 +3,7 @@ import json
from ..knowledge_base import KnowledgeBase
from ..modifiable_property import is_modifiable_property
from ..utils.tokenization import train_basic_tokenization
examples = [
{
@ -107,6 +108,9 @@ base_knowledge = {
'swim': {
"groups": {'verb'},
},
'planet': {
'groups': {'noun'}
}
}
def test_assumption(expectedResponse, knowledge, query):
@ -125,6 +129,8 @@ def main():
knowledge=base_knowledge,
)
train_basic_tokenization(knowledge)
for example in examples:
with session().log(example['text']):
differences = knowledge.train([example])

View File

@ -0,0 +1,67 @@
from ..session.org_mode import global_session as session
from ..knowledge_base import KnowledgeBase
from ..utils.visuals import show_progbar
from ..visualization import show_knowledge
def _assert(args):
assert(args)
def _assert_msg(args, msg):
assert args, msg
EXAMPLES = [
('example', {
"text": 'cat',
"tokens": ['cat'],
}),
('example', {
"text": 'cats',
"tokens": ['cats'],
"meaning": { 'cats': ('add-modifier', 'cat', 'plural') },
}),
('example', {
"text": 'text separated by spaces',
"tokens": ['text', 'separated', 'by', 'spaces'],
}),
('test', {
"text": 'plane',
"tokens": ['plane'],
}),
('test', {
"text": 'planes',
"tokens": ['planes'],
"meaning": { 'planes': ('add-modifier', 'plane', 'plural') },
}),
('test', {
"text": 'some other text',
"tokens": ['some', 'other', 'text'],
})
]
def main():
knowledge = KnowledgeBase()
total = len(EXAMPLES)
for i, (case_type, example) in enumerate(EXAMPLES):
show_progbar(i, total, example['text'])
if case_type == 'example':
with session().log(example['text']):
knowledge.train_tokenizer(example)
elif case_type == 'test':
with session().log(example['text']):
tokens = list(knowledge.tokenize(example['text']))
assert example['tokens'] == tokens
else:
raise Exception('Not implemented case {}'.format(case_type))
print("\r\x1b[K", end='')
return knowledge

View File

@ -0,0 +1,19 @@
BASIC_TOKENIZATION_EXAMPLES = (
({
"text": 'cat',
"tokens": ['cat'],
}),
({
"text": 'text separated by spaces',
"tokens": ['text', 'separated', 'by', 'spaces'],
}),
({
"text": 'is earth a planet?',
"tokens": ['is', 'earth', 'a', 'planet', '?'],
}),
)
def train_basic_tokenization(knowledge_base):
for example in BASIC_TOKENIZATION_EXAMPLES:
knowledge_base.train_tokenizer(example)