Expand the test cases applied in the NLU approach.

This commit is contained in:
kenkeiras 2017-06-04 18:57:02 +02:00
commit 46dcf55793
14 changed files with 1122 additions and 194 deletions

15
naive-nlu/setup.py Normal file
View File

@ -0,0 +1,15 @@
from setuptools import setup
setup(name='tree_nlu',
version='0.1',
description='Naïve AST based NLU.',
author='kenkeiras',
author_email='kenkeiras@codigoparallevar.com',
packages=['tree_nlu'],
scripts=[
],
include_package_data=True,
install_requires = [
'jsondiff',
],
zip_safe=False)

View File

@ -1,151 +1,4 @@
import json
import logging
logging.getLogger().setLevel(logging.INFO)
from knowledge_base import KnowledgeBase
from modifiable_property import is_modifiable_property
examples = [
{
"text": "icecream is cold",
"parsed": ("exists-property-with-value", 'icecream', 'cold'),
},
{
"text": "is icecream cold?",
"parsed": ("question", ("exists-property-with-value", 'icecream', 'cold'))
},
{
"text": "lava is dangerous",
"parsed": ("exists-property-with-value", 'lava', 'dangerous')
},
{
"text": "is lava dangerous?",
"parsed": ("question", ("exists-property-with-value", 'lava', 'dangerous')),
},
{
"text": "earth is a planet",
"parsed": ("pertenence-to-group", 'earth', 'planet'),
},
{
"text": "io is a moon",
"parsed": ("pertenence-to-group", 'io', 'moon'),
},
{
"text": "is earth a moon?",
"parsed": ("question", ("pertenence-to-group", 'earth', 'moon')),
},
{
"text": "Green is a color",
"parsed": ("pertenence-to-group", 'green', 'color'),
},
{
"text": "a plane can fly",
"parsed": ("has-capacity", 'plane', 'fly')
},
{
"text": "a wale can swim",
"parsed": ("has-capacity", 'wale', 'swim')
},
]
base_knowledge = {
'icecream': {
"groups": set(['noun', 'object', 'comestible', 'sweet']),
},
'lava': {
"groups": set(['noun', 'object']),
},
'earth': {
"groups": set(['noun', 'object', 'planet']),
},
'io': {
"groups": set(['noun', 'object']),
},
'green': {
"groups": set(['noun', 'color', 'concept']),
},
'plane': {
"groups": set(['noun', 'object', 'vehicle', 'fast']),
},
'car': {
"groups": set(['noun', 'object', 'vehicle', 'slow-ish']),
},
'wale': {
"groups": set(['noun', 'object', 'living-being']),
},
'cold': {
"groups": set(['property', 'temperature']),
"as_property": "temperature",
},
'dangerous': {
"groups": set(['property']),
"as_property": "safety",
},
'planet': {
"groups": set(['noun', 'group']),
},
'moon': {
"groups": set(['noun', 'group']),
},
'color': {
"groups": set(['property', 'group']),
},
'fly': {
"groups": set(['verb']),
},
'swim': {
"groups": set(['verb']),
},
}
def test_assumption(expectedResponse, knowledge, query):
logging.info("Query: {}".format(query['text']))
logging.info("Expected: {}".format(expectedResponse))
result, abstract_tree, diff = knowledge.process(query['text'])
end_result = result.getter() if is_modifiable_property(result) else result
logging.info("\x1b[0;3{}mResult: {}\x1b[0m".format("1" if end_result != expectedResponse else "2", end_result))
assert(end_result == expectedResponse)
def main():
knowledge = KnowledgeBase(
knowledge=base_knowledge,
)
differences = knowledge.train(examples)
logging.info("----")
logging.info(differences())
logging.info("----")
test_assumption(True, knowledge, {'text': 'earth is a planet'})
test_assumption(True, knowledge, {'text': 'is lava dangerous?'})
for test in [{'text': 'a bus can run'}, {'text': 'io is a moon'}]:
row = test['text']
result, inferred_tree, differences = knowledge.process(row)
logging.info("result:", result)
logging.info(differences())
logging.info("---")
logging.info('-----')
logging.info(json.dumps(sorted(knowledge.knowledge.keys()), indent=4))
logging.info('-----')
queryTrue = {
"text": "is io a moon?",
"parsed": ("question", ("pertenence-to-group", "io", "moon"))
}
queryFalse = {
"text": "is io a planet?",
"parsed": ("question", ("pertenence-to-group", "io", "planet"))
}
test_assumption(False, knowledge, queryFalse)
test_assumption(True, knowledge, queryTrue)
from tree_nlu import test
if __name__ == '__main__':
main()
test.main()

View File

View File

@ -1,5 +1,5 @@
import sys
import parameters
from . import parameters
def show_depth(depth: int, zoom: int=2):
offset = int((parameters.MAX_RECURSIONS - depth) / (2 / zoom))

View File

@ -1,9 +1,10 @@
import copy
import logging
import parsing
import knowledge_evaluation
from modifiable_property import is_modifiable_property
from . import parsing
from . import knowledge_evaluation
from .modifiable_property import is_modifiable_property
def diff_knowledge(before, after):
@ -23,6 +24,13 @@ class KnowledgeBase(object):
# Parse everything
parsed_examples = []
for example in examples:
# If there's parsed data, leverage it ASAP
if 'parsed' in example:
result = knowledge_evaluation.integrate_information(self.knowledge, {
"parsed": example['parsed'],
})
self.act_upon(result)
logging.info("\x1b[7;32m> {} \x1b[0m".format(example))
tokens, decomposition, inferred_tree = parsing.integrate_language(self, example)
logging.info(tokens)
@ -48,6 +56,7 @@ class KnowledgeBase(object):
def process(self, row):
row = row.lower()
knowledge_before = copy.deepcopy(self.knowledge)
logging.info("\x1b[7;32m> {} \x1b[0m".format(row))
tokens = parsing.to_tokens(row)

View File

@ -1,4 +1,4 @@
from modifiable_property import (
from .modifiable_property import (
ModifiableProperty,
ModifiablePropertyWithAst,
is_modifiable_property,
@ -41,17 +41,43 @@ def get_subquery_type(knowledge_base, atom):
def property_for_value(knowledge_base, value):
return knowledge_base[value]['as_property']
if value in knowledge_base:
# Annotate the property as property
groups = knowledge_base[value].get('groups', {'property'})
groups.add('property')
knowledge_base[value]['groups'] = groups
# And find the property "name"
if 'as_property' in knowledge_base[value]:
return knowledge_base[value]['as_property']
return knowledge_base[value].get('groups', {'property'})
else:
# Consider that any property is... a property
knowledge_base[value] = {'groups': {'property'}}
return {'property'}
def modifiable_property_from_property(prop, path, value):
def getter():
nonlocal prop, path, value
return (path in prop) and prop[path] == value
if isinstance(path, set):
# If the property is from a set, it's true if any possible
# path has a element as true
return any(map(lambda possible_path: ((possible_path in prop)
and
(prop[possible_path] == value)),
path))
else:
return (path in prop) and prop[path] == value
def setter():
nonlocal prop, path, value
prop[path] = value
if isinstance(path, set):
for possible_path in path:
prop[possible_path] = value
else:
prop[path] = value
return ModifiableProperty(
getter=getter,
@ -87,22 +113,42 @@ def modifiable_element_for_existance_in_set(container, set_name, element):
setter=setter,
)
def modifiable_element_for_existance_in_group(container, element, backlink, set_name='groups'):
def getter():
nonlocal container, element, backlink, set_name
return (set_name in container) and (element in container[set_name])
def setter():
nonlocal container, set_name, element
backlink['groups'].add(set_name)
return container[set_name].add(element)
return ModifiableProperty(
getter=getter,
setter=setter,
)
def pertenence_to_group(knowledge_base, elements, subj, group):
subj = resolve(knowledge_base, elements, subj)
group = resolve(knowledge_base, elements, group)
if subj not in knowledge_base:
knowledge_base[subj] = {}
knowledge_base[subj] = {'groups': set()}
if "groups" not in knowledge_base[subj]:
knowledge_base[subj]["groups"] = set()
return modifiable_element_for_existance_in_set(
container=knowledge_base[subj],
set_name="groups",
element=group
)
if group not in knowledge_base:
knowledge_base[group] = {'groups': set()}
if "groups" not in knowledge_base[group]:
knowledge_base[group]["groups"] = set()
return modifiable_element_for_existance_in_group(
container=knowledge_base[subj],
element=group,
backlink=knowledge_base[group],
)
def has_capacity(knowledge_base, elements, subj, capacity):
subj = resolve(knowledge_base, elements, subj)
@ -128,12 +174,48 @@ def question(knowledge_base, elements, subj):
return subj.getter()
return subj
def implies(knowledge_base, elements, precedent, consequent):
precedent = resolve(knowledge_base, elements, precedent)
consequent = resolve(knowledge_base, elements, consequent)
if precedent not in knowledge_base:
knowledge_base[precedent] = {'groups': set()}
if "implications" not in knowledge_base[precedent]:
knowledge_base[precedent]["implications"] = set()
return modifiable_element_for_existance_in_set(
container=knowledge_base[precedent],
set_name="implications",
element=consequent
)
def property_has_value(knowledge_base, elements, subj, prop, value):
subj = resolve(knowledge_base, elements, subj)
prop = resolve(knowledge_base, elements, prop)
value = resolve(knowledge_base, elements, value)
if subj not in knowledge_base:
knowledge_base[subj] = {'groups': set()}
if prop not in knowledge_base[subj]:
knowledge_base[subj][prop] = set()
return modifiable_element_for_existance_in_set(
container=knowledge_base[subj],
set_name=prop,
element=value
)
knowledge_ingestion = {
"exists-property-with-value": exists_property_with_value,
"pertenence-to-group": pertenence_to_group,
"has-capacity": has_capacity,
"question": question,
"implies": implies,
"property-has-value": property_has_value,
}

View File

@ -1,16 +1,16 @@
#!/usr/bin/env python
import knowledge_evaluation
from . import knowledge_evaluation
import depth_meter
from . import depth_meter
import logging
import re
import copy
from functools import reduce
from typing import List
from modifiable_property import ModifiableProperty
import parameters
from typing import List, Dict
from .modifiable_property import ModifiableProperty
from . import parameters
# TODO: more flexible tokenization
def to_tokens(text):
@ -88,13 +88,15 @@ def integrate_language(knowledge_base, example):
for position, atom in lower_levels:
logging.debug("\x1b[1mSelecting\x1b[0m: {}".format(atom))
similar = get_similar_tree(knowledge_base, atom)
similar = get_similar_tree(knowledge_base, atom, tokens)
remix, (start_bounds, end_bounds) = build_remix_matrix(knowledge_base, tokens, atom, similar)
_, matcher, result = make_template(knowledge_base, tokens, atom)
logging.debug("Tx: {}".format(tokens))
logging.debug("Mx: {}".format(matcher))
logging.debug("Rx: {}".format(result))
logging.debug("Remix: {}".format(remix))
logging.debug("Sx: {}".format(start_bounds))
logging.debug("Ex: {}".format(end_bounds))
after_remix = apply_remix(tokens[len(start_bounds):-len(end_bounds)], remix)
assert(len(after_remix) + len(start_bounds) + len(end_bounds) == len(tokens))
@ -127,16 +129,22 @@ def integrate_language(knowledge_base, example):
def apply_remix(tokens, remix):
rebuilt = []
for i in remix:
rebuilt.append(tokens[i])
if isinstance(i, int):
if i >= len(tokens):
return None
rebuilt.append(tokens[i])
else:
assert(isinstance(i, str))
rebuilt.append(i)
return rebuilt
def build_remix_matrix(knowledge_base, tokens, atom, similar):
tokens = list(tokens)
tokens, matcher, result = make_template(knowledge_base, tokens, atom)
similar_matcher, similar_result, similar_result_resolved, _ = similar
similar_matcher, similar_result, similar_result_resolved, _, _ = similar
start_bounds, end_bounds = find_bounds(matcher, similar_matcher)
start_bounds, end_bounds = find_bounds(knowledge_base, matcher, similar_matcher)
for i, element in (end_bounds + start_bounds[::-1]):
matcher.pop(i)
@ -154,13 +162,14 @@ def get_possible_remixes(knowledge_base, matcher, similar_matcher):
for element in matcher:
logging.debug("- {}".format(element))
logging.debug("+ {}".format(similar_matcher))
assert(element in similar_matcher or isinstance(element, dict))
if isinstance(element, dict):
indexes = all_matching_indexes(knowledge_base, similar_matcher, element)
if element in similar_matcher or isinstance(element, dict):
if isinstance(element, dict):
indexes = all_matching_indexes(knowledge_base, similar_matcher, element)
else:
indexes = all_indexes(similar_matcher, element)
matrix.append(indexes)
else:
indexes = all_indexes(similar_matcher, element)
matrix.append(indexes)
matrix.append([element])
# TODO: do some scoring to find the most "interesting combination"
return [list(x) for x in list(zip(*matrix))]
@ -190,13 +199,21 @@ def all_matching_indexes(knowledge_base, collection, element):
instance = knowledge_base.knowledge[instance]["groups"]
intersection = set(instance) & set(element)
if len(intersection) > 0:
if (len(intersection) > 0 or (0 == len(instance) == len(element))):
indexes.append((i, intersection))
return [x[0] for x in sorted(indexes, key=lambda x: len(x[1]), reverse=True)]
def find_bounds(matcher, similar_matcher):
def element_matches_groups(knowledge, element: Dict, groups):
if isinstance(groups, str) and groups in knowledge:
return len(knowledge[element].get("groups", set()) & element['groups']) > 0
elif isinstance(groups, dict):
return len(element.get("groups", set()) & element['groups']) > 0
return False
def find_bounds(knowledge, matcher, similar_matcher):
start_bounds = []
for i, element in enumerate(matcher):
if element in similar_matcher:
@ -206,7 +223,15 @@ def find_bounds(matcher, similar_matcher):
end_bounds = []
for i, element in enumerate(matcher[::-1]):
if element in similar_matcher:
in_similar = False
if isinstance(element, str):
in_similar = element in similar_matcher
elif isinstance(element, dict):
in_similar = any(map(lambda groups: element_matches_groups(knowledge.knowledge,
element, groups),
similar_matcher))
if in_similar:
break
else:
end_bounds.append((len(matcher) - (i + 1), element))
@ -214,7 +239,7 @@ def find_bounds(matcher, similar_matcher):
return start_bounds, end_bounds
def get_similar_tree(knowledge_base, atom):
def get_similar_tree(knowledge_base, atom, tokens):
possibilities = []
# Find matching possibilities
@ -238,12 +263,17 @@ def get_similar_tree(knowledge_base, atom):
raw))
# TODO: Probably should take into account the categories of the elements in the "intake" ([0]) element
score = sum([resolved[i] == atom[i]
atom_score = sum([resolved[i] == atom[i]
for i
in range(min(len(resolved),
len(atom)))])
sorted_possibilities.append((raw, possibility, resolved, score))
sorted_possibilities = sorted(sorted_possibilities, key=lambda p: p[3], reverse=True)
token_score = sum([similar_token in tokens
for similar_token
in raw])
sorted_possibilities.append((raw, possibility, resolved, atom_score, token_score))
sorted_possibilities = sorted(sorted_possibilities, key=lambda p: p[3] * 100 + p[4], reverse=True)
if len(sorted_possibilities) < 1:
return None
@ -268,14 +298,23 @@ def get_matching(sample, other):
x[0][i][0] == sample[0][i][0],
other))
return [sample[0][x] if isinstance(sample[0][x], str)
else
sample[0][x] if isinstance(sample[0][x], tuple)
else {'groups': sample[0][x]['groups'] & reduce(lambda a, b: a & b,
map(lambda y: y[0][x]['groups'],
other))}
for x
in range(l)]
matching = []
for x in range(l): # Generate the combination of this and other(s) matcher
first_sample_data = sample[0][x]
if isinstance(first_sample_data, str):
matching.append(first_sample_data)
elif isinstance(first_sample_data, tuple):
matching.append(first_sample_data)
else:
this_groups = sample[0][x]['groups']
if len(other) > 0:
other_groups = reduce(lambda a, b: a & b,
map(lambda y: y[0][x]['groups'],
other))
this_groups = this_groups & other_groups
matching.append({'groups': this_groups})
return matching
def reprocess_language_knowledge(knowledge_base, examples):
@ -294,8 +333,16 @@ def reprocess_language_knowledge(knowledge_base, examples):
def reverse_remix(tree_section, remix):
result_section = []
offset = 0
for origin in remix:
result_section.append(copy.deepcopy(tree_section[origin]))
if isinstance(origin, int):
if origin >= len(tree_section):
return None
result_section.append(copy.deepcopy(tree_section[origin + offset]))
else:
assert(isinstance(origin, str))
offset += 1
return result_section + tree_section[len(remix):]
@ -332,6 +379,9 @@ def resolve_fit(knowledge, fit, remaining_recursions):
else:
((result_type, remixer), tokens) = element
remixed_tokens = reverse_remix(tokens, remixer)
if remixed_tokens is None:
return None
minifit = get_fit(knowledge, remixed_tokens, remaining_recursions - 1)
if minifit is None:
return None

View File

@ -0,0 +1,34 @@
import traceback
import logging
from .tests import basic
from .tests import gac_100
logging.getLogger().setLevel(logging.ERROR)
tests = (
("basic", basic),
("gac 100", gac_100),
)
def main():
failed = False
for test_name, test_module in tests:
try:
test_module.main()
print(" \x1b[1;32m✓\x1b[0m {}".format(test_name))
except AssertionError as ae:
print(" \x1b[1;31m✗\x1b[0m {}{}".format(test_name,
('\n [Assertion] {}'.format(ae.args[0])) if len(ae.args) > 0
else ''))
failed = True
except Exception as e:
print(" \x1b[1;7;31m!\x1b[0m {}\n [Exception] {}".format(test_name, e))
failed = True
traceback.print_exc()
if failed:
exit(1)
if __name__ == '__main__':
main()

View File

@ -0,0 +1,151 @@
import logging
import json
from ..knowledge_base import KnowledgeBase
from ..modifiable_property import is_modifiable_property
examples = [
{
"text": "icecream is cold",
"parsed": ("exists-property-with-value", 'icecream', 'cold'),
},
{
"text": "is icecream cold?",
"parsed": ("question", ("exists-property-with-value", 'icecream', 'cold'))
},
{
"text": "lava is dangerous",
"parsed": ("exists-property-with-value", 'lava', 'dangerous')
},
{
"text": "is lava dangerous?",
"parsed": ("question", ("exists-property-with-value", 'lava', 'dangerous')),
},
{
"text": "earth is a planet",
"parsed": ("pertenence-to-group", 'earth', 'planet'),
},
{
"text": "io is a moon",
"parsed": ("pertenence-to-group", 'io', 'moon'),
},
{
"text": "is earth a moon?",
"parsed": ("question", ("pertenence-to-group", 'earth', 'moon')),
},
{
"text": "Green is a color",
"parsed": ("pertenence-to-group", 'green', 'color'),
},
{
"text": "a plane can fly",
"parsed": ("has-capacity", 'plane', 'fly')
},
{
"text": "a wale can swim",
"parsed": ("has-capacity", 'wale', 'swim')
},
# {
# "text": "if earth is a planet, it is big",
# "parsed": ("implies",
# ("pertenence-to-group", 'earth', 'planet'),
# ("exists-property-with-value", 'earth', 'big')),
# },
]
base_knowledge = {
'icecream': {
"groups": {'noun', 'object', 'comestible', 'sweet'},
},
'lava': {
"groups": {'noun', 'object'},
},
'earth': {
"groups": {'noun', 'object', 'planet'},
},
'io': {
"groups": {'noun', 'object'},
},
'green': {
"groups": {'noun', 'color', 'concept'},
},
'plane': {
"groups": {'noun', 'object', 'vehicle', 'fast'},
},
'car': {
"groups": {'noun', 'object', 'vehicle', 'slow-ish'},
},
'wale': {
"groups": {'noun', 'object', 'living-being'},
},
'cold': {
"groups": {'property', 'temperature'},
"as_property": "temperature",
},
'dangerous': {
"groups": {'property'},
"as_property": "safety",
},
'planet': {
"groups": {'noun', 'group'},
},
'moon': {
"groups": {'noun', 'group'},
},
'color': {
"groups": {'property', 'group'},
},
'fly': {
"groups": {'verb'},
},
'swim': {
"groups": {'verb'},
},
}
def test_assumption(expectedResponse, knowledge, query):
logging.info("Query: {}".format(query['text']))
logging.info("Expected: {}".format(expectedResponse))
result, abstract_tree, diff = knowledge.process(query['text'])
end_result = result.getter() if is_modifiable_property(result) else result
logging.info("\x1b[0;3{}mResult: {}\x1b[0m".format("1" if end_result != expectedResponse else "2", end_result))
if end_result != expectedResponse:
raise AssertionError('{} is not {}'.format(end_result, expectedResponse))
def main():
knowledge = KnowledgeBase(
knowledge=base_knowledge,
)
differences = knowledge.train(examples)
logging.info("----")
logging.info(differences())
logging.info("----")
test_assumption(True, knowledge, {'text': 'earth is a planet'})
test_assumption(True, knowledge, {'text': 'is lava dangerous?'})
for test in [{'text': 'a bus can run'}, {'text': 'io is a moon'}]:
row = test['text']
result, inferred_tree, differences = knowledge.process(row)
logging.info("result:", result)
logging.info(differences())
logging.info("---")
logging.info('-----')
logging.info(json.dumps(sorted(knowledge.knowledge.keys()), indent=4))
logging.info('-----')
queryTrue = {
"text": "is io a moon?",
"parsed": ("question", ("pertenence-to-group", "io", "moon"))
}
queryFalse = {
"text": "is io a planet?",
"parsed": ("question", ("pertenence-to-group", "io", "planet"))
}
test_assumption(False, knowledge, queryFalse)
test_assumption(True, knowledge, queryTrue)

View File

@ -0,0 +1,715 @@
from ..knowledge_base import KnowledgeBase
from ..utils.visuals import show_progbar
def _assert(args):
assert(args)
def _assert_msg(args, msg):
assert(args, msg)
examples = [
('full_example',
{
"text": "is icecream cold?",
"affirmation": "icecream is cold",
"parsed": ("question",
("exists-property-with-value", 'icecream', 'cold')),
"answer": True,
"after_execution": [(
lambda knowledge: _assert('cold' in knowledge.knowledge['icecream']['property'])
),],
}),
('full_example',
{
"text": "is earth a planet?",
"affirmation": "earth is a planet",
"parsed": ("question",
("pertenence-to-group", 'earth', 'planet')),
"answer": True,
"after_execution": [(
lambda knowledge: _assert('planet' in knowledge.knowledge['earth']['groups'])
),],
}),
('full_example',
{
"text": "Is green a color?",
"affirmation": "green is a color",
"parsed": ("question",
("pertenence-to-group", 'green', 'color')),
"answer": True,
"after_execution": [(
lambda knowledge: _assert('color' in knowledge.knowledge['green']['groups'])
),],
}),
('full_example',
{
"text": "do airplanes fly?",
"affirmation": "airplanes fly",
"parsed": ("question",
("has-capacity", 'plane', 'fly')),
"answer": True,
"after_execution": [(
lambda knowledge: _assert('fly' in knowledge.knowledge['plane']['capacities'])
),],
}),
('full_example',
{
"text": "Is it hot during the summer?",
"affirmation": "it is hot during summer",
"parsed": ("question",
("implies", 'summer', 'hot')),
"answer": True,
"after_execution": [(
lambda knowledge: _assert('hot' in knowledge.knowledge['summer']['implications'])
),],
}),
('full_example',
{
"text": "is chile in south america ?",
"affirmation": "chile is in south america",
"parsed": ("question",
("property-has-value", 'chile', 'location', 'south america')),
"answer": True,
"after_execution": [(
lambda knowledge: _assert('south america' in knowledge.knowledge['chile']['location'])
),],
}),
('full_example',
{
"text": "Was Socrates a man?",
"affirmation": "Socrates was a man",
"parsed": ("question",
("pertenence-to-group", 'socrates', 'man')),
"answer": True,
"after_execution": [(
lambda knowledge: _assert('man' in knowledge.knowledge['socrates']['groups'])
),],
}),
# {
# "text": "Computers use electricity?",
# "affirmation": "Computers use electricity?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "The dominant language in france is french?",
# "affirmation": "The dominant language in france is french?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "was abraham lincoln once president of the united states?",
# "affirmation": "was abraham lincoln once president of the united states?",
# "parsed": (),
# "answer": None,
# },
('text_example',
{
"question": "Is milk white?",
"affirmation": "milk is white",
"answer": True,
}),
# {
# "text": "do people have emotions?",
# "affirmation": "do people have emotions?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "do objects appear smaller as they move away from you?",
# "affirmation": "do objects appear smaller as they move away from you?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Does the human species have a male and female gender?",
# "affirmation": "Does the human species have a male and female gender?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is a mountain mostly made of rock?",
# "affirmation": "Is a mountain mostly made of rock?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "is sun microsystems a computer company?",
# "affirmation": "is sun microsystems a computer company?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Do you see with your eyes and smell with your nose?",
# "affirmation": "Do you see with your eyes and smell with your nose?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is smoking bad for your health?",
# "affirmation": "Is smoking bad for your health?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Does a dog have four legs?",
# "affirmation": "Does a dog have four legs?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Do mammals have hearts?",
# "affirmation": "Do mammals have hearts?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "is the Earth a planet?",
# "affirmation": "is the Earth a planet?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is water a liquid?",
# "affirmation": "Is water a liquid?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is Bugs Bunny a cartoon character?",
# "affirmation": "Is Bugs Bunny a cartoon character?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Do Humans communicate by Telephone?",
# "affirmation": "Do Humans communicate by Telephone?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "is beer a drink ?",
# "affirmation": "is beer a drink ?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "are there 12 months in a year?",
# "affirmation": "are there 12 months in a year?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "does the sun hurt your eyes when you look at it?",
# "affirmation": "does the sun hurt your eyes when you look at it?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Do most cars have doors?",
# "affirmation": "Do most cars have doors?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "is orange both a fruit and a colour?",
# "affirmation": "is orange both a fruit and a colour?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is water a necessity?",
# "affirmation": "Is water a necessity?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Do CDs have better quality sound than Cassettes?",
# "affirmation": "Do CDs have better quality sound than Cassettes?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "do animals die?",
# "affirmation": "do animals die?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is the arctic cold?",
# "affirmation": "Is the arctic cold?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Do people have 2 eyes?",
# "affirmation": "Do people have 2 eyes?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "does a person have a brain?",
# "affirmation": "does a person have a brain?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is the rain wet?",
# "affirmation": "Is the rain wet?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is division a mathematical operation?",
# "affirmation": "Is division a mathematical operation?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "is 400 greater than 399?",
# "affirmation": "is 400 greater than 399?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "is magenta a color?",
# "affirmation": "is magenta a color?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Are books educational?",
# "affirmation": "Are books educational?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Was the Great Wall of China built by humans?",
# "affirmation": "Was the Great Wall of China built by humans?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Are pianos musical instruments?",
# "affirmation": "Are pianos musical instruments?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Has Bill Clinton been President of the United States?",
# "affirmation": "Has Bill Clinton been President of the United States?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is a whale a mammal?",
# "affirmation": "Is a whale a mammal?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Are lemons yellow?",
# "affirmation": "Are lemons yellow?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is the South Pole cold?",
# "affirmation": "Is the South Pole cold?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is Africa warm?",
# "affirmation": "Is Africa warm?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is Antarctica cold?",
# "affirmation": "Is Antarctica cold?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is rock is generally harder than wood?",
# "affirmation": "Is rock is generally harder than wood?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Do dogs chase cats?",
# "affirmation": "Do dogs chase cats?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "can humans die from cold temperatures?",
# "affirmation": "can humans die from cold temperatures?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "do people enjoy conversation?",
# "affirmation": "do people enjoy conversation?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is Bill Clinton the President of the United States?",
# "affirmation": "Is Bill Clinton the President of the United States?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Are books a good source of information?",
# "affirmation": "Are books a good source of information?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "are friends different than enemies?",
# "affirmation": "are friends different than enemies?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "are people alive?",
# "affirmation": "are people alive?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Do triangles have 3 sides?",
# "affirmation": "Do triangles have 3 sides?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is Ice cream cold?",
# "affirmation": "Is Ice cream cold?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Are all sides of a square the same length?",
# "affirmation": "Are all sides of a square the same length?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Do all people eat food?",
# "affirmation": "Do all people eat food?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "do dentists repair teeth?",
# "affirmation": "do dentists repair teeth?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is America bigger than Japan?",
# "affirmation": "Is America bigger than Japan?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Do all triangles have three sides?",
# "affirmation": "Do all triangles have three sides?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "A grocery store sales food?",
# "affirmation": "A grocery store sales food?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Does a sunburn cause pain?",
# "affirmation": "Does a sunburn cause pain?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is a computer an invention?",
# "affirmation": "Is a computer an invention?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "have humans visited the moon?",
# "affirmation": "have humans visited the moon?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Are there people in India?",
# "affirmation": "Are there people in India?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Was Einstein a genius?",
# "affirmation": "Was Einstein a genius?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Are we on the planet earth?",
# "affirmation": "Are we on the planet earth?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "do people comb their hair in the morning?",
# "affirmation": "do people comb their hair in the morning?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Does it hurt to lose a friend?",
# "affirmation": "Does it hurt to lose a friend?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Are there people on the earth?",
# "affirmation": "Are there people on the earth?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Was George Washington a president of the United States of America?",
# "affirmation": "Was George Washington a president of the United States of America?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Does an ocean have salt water in it?",
# "affirmation": "Does an ocean have salt water in it?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is night darker than day?",
# "affirmation": "Is night darker than day?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Does a triangle have three sides?",
# "affirmation": "Does a triangle have three sides?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Are peaches fruit?",
# "affirmation": "Are peaches fruit?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Do people urinate?",
# "affirmation": "Do people urinate?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is Germany located in Europe?",
# "affirmation": "Is Germany located in Europe?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Do mirrors reflect light?",
# "affirmation": "Do mirrors reflect light?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Are people born naked?",
# "affirmation": "Are people born naked?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is it hot near the equator?",
# "affirmation": "Is it hot near the equator?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "is paper made from trees?",
# "affirmation": "is paper made from trees?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Can a female have children?",
# "affirmation": "Can a female have children?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Are people born every day?",
# "affirmation": "Are people born every day?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Are shoes worn on the feet?",
# "affirmation": "Are shoes worn on the feet?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "does it get wet when it rains?",
# "affirmation": "does it get wet when it rains?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Are there plants and insects in the rainforest which have no names?",
# "affirmation": "Are there plants and insects in the rainforest which have no names?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Do people eat pigs?",
# "affirmation": "Do people eat pigs?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Do businessmen wear ties?",
# "affirmation": "Do businessmen wear ties?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is New York in the United States?",
# "affirmation": "Is New York in the United States?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Are humans more intelligent than ants?",
# "affirmation": "Are humans more intelligent than ants?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Are ravens black?",
# "affirmation": "Are ravens black?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Are there rats on ships?",
# "affirmation": "Are there rats on ships?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "are lions animals?",
# "affirmation": "are lions animals?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "6 is greater than 5?",
# "affirmation": "6 is greater than 5?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Is water made of hydrogen and oxygen?",
# "affirmation": "Is water made of hydrogen and oxygen?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "is the sky blue on a clear day?",
# "affirmation": "is the sky blue on a clear day?",
# "parsed": (),
# "answer": None,
# },
# {
# "text": "Do most people work during the day?",
# "affirmation": "Do most people work during the day?",
# "parsed": (),
# "answer": None,
# },
]
base_knowledge = {
'icecream': {
"groups": {'noun', 'object', 'comestible', 'sweet'},
},
'hot': {
"groups": {'property', 'temperature'},
},
'summer': {
"groups": {'epoch'},
},
'planet': {
"groups": {'noun', 'group'},
},
'green': {
"groups": {'noun', 'color', 'concept'},
},
'fly': {
"groups": {'verb'},
},
}
def main():
knowledge = KnowledgeBase(
knowledge=base_knowledge,
)
total = len(examples)
for i, (example_type, data) in enumerate(examples):
if example_type == 'full_example':
affirmation = {
'text': data['affirmation'],
'parsed': data['parsed'][1],
}
question = data
show_progbar(i, total, data['affirmation'])
differences = knowledge.train([affirmation])
show_progbar(i, total, data['text'])
differences = knowledge.train([question])
result, _, _ = knowledge.process(data['text'])
if result != data['answer']:
raise AssertionError('{} is not {}'.format(result, data['answer']))
if "after_execution" in data:
for f in data["after_execution"]:
f(knowledge)
elif example_type == 'text_example':
show_progbar(i, total, data['affirmation'])
affirmation = data['affirmation']
show_progbar(i, total, data['question'])
question = data['question']
_, _, _ = knowledge.process(affirmation)
result, _, _ = knowledge.process(question)
if result != data['answer']:
raise AssertionError('{} is not {}'.format(result, data['answer']))
else:
raise NotImplementedError('Example type: {}'.format(example_type))
print("\r\x1b[K", end='')

View File

@ -0,0 +1,4 @@
def dumper(obj):
if isinstance(obj, set):
return list(obj)
return obj

View File

@ -0,0 +1,15 @@
def show_progbar(done, total, msg=''):
total_blocks = 10
blocks_done = (done * total_blocks) // total
blocks_to_go = total_blocks - blocks_done
print('\r\x1b[K' # Go to the start of the line
'\x1b[0m' # Restart the "style"
'|' # Put the first "|"
+ blocks_done * '' # Completed blocks
+ blocks_to_go * ' ' # Uncompleted blocks
+ '\x1b[7m|\x1b[0m' # End the bar
+ ' '
+ msg # Add message
+ '\r' # Go back to the start
, end='')