2018-04-23 20:48:10 +00:00
|
|
|
from ..session.org_mode import global_session as session
|
|
|
|
from ..atoms import Atom, a, is_atom
|
2018-04-15 20:15:28 +00:00
|
|
|
|
|
|
|
def lookahead_for_tokens_or_strucutral_elements(knowledge_base, remaining):
|
|
|
|
for se in knowledge_base.structural_elements:
|
|
|
|
found_position = remaining.find(se)
|
|
|
|
found = found_position >= 0
|
|
|
|
session().annotate('Looking for structure with “{}”, found? {}'.format(se, found))
|
|
|
|
if found:
|
|
|
|
return [
|
|
|
|
(remaining[:found_position], se, remaining[found_position + len(se):])
|
|
|
|
]
|
|
|
|
|
|
|
|
for token in knowledge_base.knowledge.keys():
|
|
|
|
found_position = remaining.find(token)
|
|
|
|
found = found_position >= 0
|
|
|
|
session().annotate('Looking for token “{}”, found? {}'.format(token, found))
|
|
|
|
if found:
|
|
|
|
return [
|
|
|
|
(remaining[:found_position], token, remaining[found_position + len(token):])
|
|
|
|
]
|
|
|
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def to_tokens(knowledge_base, text, precedent=None):
|
|
|
|
if len(text) == 0:
|
|
|
|
session().annotate("No text remaining")
|
|
|
|
yield ['']
|
|
|
|
return
|
|
|
|
|
|
|
|
with session().log("Tokenizing {}".format(text)):
|
|
|
|
for option in knowledge_base.expected_token_after_precedent(precedent):
|
|
|
|
with session().log("Next: “{}”".format(option)):
|
|
|
|
with session().log("Matching “{}” on “{}”".format(option, text)):
|
|
|
|
for token_match in tokenization_match(option, text, knowledge_base):
|
|
|
|
if token_match is None:
|
|
|
|
session().annotate("No match")
|
|
|
|
|
|
|
|
match, remaining = token_match
|
|
|
|
if len(remaining) == len(text):
|
|
|
|
raise Exception('No text consumed in match')
|
|
|
|
|
|
|
|
session().annotate('Match: “{}”'.format(match))
|
|
|
|
with session().log('Remaining “{}”'.format(remaining)):
|
|
|
|
for sublevel in to_tokens(knowledge_base, remaining, match):
|
|
|
|
candidate = list(filter(lambda x: x != '', [match] + sublevel))
|
|
|
|
session().annotate('Yielding candidate “{}”'.format(candidate))
|
|
|
|
yield candidate
|
|
|
|
|
|
|
|
|
|
|
|
def tokenization_match(element, text, knowledge_base):
|
|
|
|
# Constant/structural string matching
|
|
|
|
if isinstance(element, str):
|
|
|
|
if text.find(element) == 0:
|
|
|
|
# This match comes from a structuring element
|
|
|
|
# It doesn't appear on the tokenization
|
|
|
|
# So we should return it as an empty string
|
|
|
|
yield ('', text[len(element):])
|
|
|
|
return
|
|
|
|
else:
|
|
|
|
# No match found
|
|
|
|
return
|
|
|
|
|
|
|
|
elif is_atom(element, 'token'):
|
|
|
|
yield from match_single_token(text, knowledge_base)
|
|
|
|
return
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
|
|
|
|
def match_single_token(text, knowledge_base):
|
|
|
|
found_token = False
|
|
|
|
for token in knowledge_base.knowledge.keys():
|
|
|
|
if text.find(token) == 0:
|
|
|
|
yield token, text[len(token):]
|
|
|
|
found_token = True
|
|
|
|
|
|
|
|
if found_token:
|
|
|
|
return
|
|
|
|
|
|
|
|
session().annotate('No token found at the start of ”{}”'.format(text))
|
|
|
|
session().annotate('using structural elements to infer it')
|
|
|
|
# TODO: review this when multiple structural elements are available
|
|
|
|
for se in knowledge_base.structural_elements:
|
|
|
|
session().annotate('Looking for se “{}” in “{}”'.format(se, text))
|
|
|
|
position = text.find(se, 0)
|
|
|
|
found = position > 0 # 0 is not considered a valid position for this kind of split
|
|
|
|
if found:
|
|
|
|
session().annotate('Found ”{}”, inferring “{}”'.format(se, text[:position]))
|
|
|
|
yield text[:position], text[position:]
|
|
|
|
|
|
|
|
session().annotate('No structural element or token found, inferring only token remaining')
|
|
|
|
yield text, ''
|
|
|
|
|
|
|
|
# Using other tokens for cutoff
|
|
|
|
for token in knowledge_base.knowledge.keys():
|
|
|
|
session().annotate('Looking for token “{}” in “{}”'.format(token, text))
|
|
|
|
position = text.find(token)
|
|
|
|
found = position >= 0
|
|
|
|
if found:
|
|
|
|
session().annotate('Found ”{}”, in position ”{}”'.format(token, position))
|
|
|
|
yield text[:position], text[position:]
|
|
|
|
|
|
|
|
|
|
|
|
def integrate_tokenization(knowledge_base, example):
|
|
|
|
text = example['text']
|
|
|
|
tokens = example['tokens']
|
|
|
|
meaning = example.get('meaning')
|
|
|
|
|
|
|
|
return integrate_token_to_text_matching(knowledge_base, text, tokens)
|
|
|
|
|
|
|
|
|
|
|
|
def integrate_token_to_text_matching(knowledge_base, text, tokens):
|
|
|
|
texts = [text]
|
|
|
|
|
|
|
|
# Convert to tokens
|
|
|
|
for token_id, token in enumerate(tokens):
|
|
|
|
# Look for token in texts
|
|
|
|
for i, text in enumerate(texts):
|
|
|
|
if isinstance(text, int):
|
|
|
|
continue
|
|
|
|
|
|
|
|
if token in text:
|
|
|
|
before, after = text.split(token, maxsplit=1)
|
|
|
|
texts = (texts[:i] + [before]
|
|
|
|
+ [a('token')]
|
|
|
|
+ [after] + texts[i + 1:])
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
raise Exception('Token not found')
|
|
|
|
|
|
|
|
# Remove leftovers from splits
|
|
|
|
texts = list(filter(lambda x: x != '', texts))
|
|
|
|
session().log("Tokenized as {} over {}".format(texts, tokens))
|
|
|
|
|
|
|
|
for i, element in enumerate(texts[:-1]):
|
|
|
|
learn_token_pair(element, texts[i + 1], knowledge_base)
|
|
|
|
|
|
|
|
return tokens
|
|
|
|
|
|
|
|
def learn_token_pair(precedent, consequent, knowledge_base):
|
|
|
|
knowledge_base.add_token_pair(precedent, consequent)
|
|
|
|
|
|
|
|
|
|
|
|
def pick_one_tokenization(options, knowledge_base):
|
|
|
|
'''
|
|
|
|
Heuristic function to pick the most probable tokenization.
|
|
|
|
|
|
|
|
Just pick the one with more results.
|
|
|
|
'''
|
|
|
|
options = list(options)
|
|
|
|
with session().log("Picking among: {} options".format(len(options))):
|
|
|
|
session().log("Options: \n{}".format('\n'.join(map(str, options))))
|
|
|
|
return pick_by_score(options,
|
|
|
|
[
|
|
|
|
# By number of splits without structuring elements
|
|
|
|
lambda tokenization: sum(map(
|
|
|
|
lambda split: sum(map(
|
|
|
|
lambda se: se in split, knowledge_base.structural_elements
|
|
|
|
)), tokenization)),
|
|
|
|
|
|
|
|
# By number of unknown tokens
|
|
|
|
lambda tokenization: len(list(filter(lambda token:
|
|
|
|
(token not in knowledge_base.knowledge.keys()) and
|
|
|
|
(token not in knowledge_base.structural_elements),
|
|
|
|
tokenization))),
|
|
|
|
|
|
|
|
# By number of splits
|
|
|
|
lambda tokenization: -len(tokenization),
|
|
|
|
])
|
|
|
|
|
|
|
|
def pick_by_score(options, heuristics):
|
|
|
|
for heuristic in heuristics:
|
|
|
|
assert(len(options) > 0)
|
|
|
|
options = list(map(lambda opt: (heuristic(opt), opt), options))
|
|
|
|
sorted_options = sorted(options, key=lambda x: x[0], reverse=False)
|
|
|
|
|
|
|
|
heuristic_cutoff = sorted_options[0][0]
|
|
|
|
session().annotate(sorted_options)
|
|
|
|
pass_heuristic = [opt for (score, opt) in sorted_options if score <= heuristic_cutoff]
|
|
|
|
options = pass_heuristic
|
|
|
|
|
|
|
|
session().log("{} finalists: \n{}".format(len(options), '\n'.join(map(str, options))))
|
|
|
|
return options[0]
|
|
|
|
|