lang-model/naive-nlu/tree_nlu/knowledge_base.py

103 lines
4.1 KiB
Python

import copy
import logging
from .session.org_mode import global_session as session
from .atoms import Atom
from . import layered_model
from . import knowledge_evaluation
from .modifiable_property import is_modifiable_property
import random
def diff_knowledge(before, after):
import jsondiff
return jsondiff.diff(before, after)
class KnowledgeBase(object):
def __init__(self, knowledge={}, examples=[], trained=[]):
self.knowledge = copy.copy(knowledge)
self.originals = []
self.examples = copy.copy(examples)
self.trained = copy.copy(trained)
self.layers = layered_model.BaseModel(self)
## Parsing
def train(self, examples):
knowledge_before = copy.deepcopy(self.knowledge)
with session().log('Train'):
# Parse everything
for example in examples:
# If there's parsed data, leverage it ASAP
if 'parsed' in example and isinstance(example['parsed'], tuple):
with session().log('parsed information integration'):
result = knowledge_evaluation.integrate_information(self.knowledge, {
"parsed": example['parsed'],
})
self.act_upon(result)
with session().log("language integration"):
for tokens, decomposition, inferred_tree in self.layers.integrate(self, example):
session().annotate("Tokens: {}".format(tokens))
session().annotate("Inferred tree: {}".format(inferred_tree))
with session().log("full information integration"):
tokens = self.layers.tokenization.tokenize(example['text'], return_one=True)
result = knowledge_evaluation.integrate_information(self.knowledge, {
"elements": tokens,
"decomposition": decomposition,
"parsed": inferred_tree,
})
session().annotate("Result: {}".format(self.get_value(result)))
self.act_upon(result)
session().annotate("Set: {}".format(self.get_value(result)))
self.examples.append((decomposition, inferred_tree))
self.originals.append(example['text'])
# Reduce values
with session().log("reprocessing"):
res = self.layers.reprocess(self.examples)
self.trained = res
knowledge_after = copy.deepcopy(self.knowledge)
knowledge_diff_getter = lambda: diff_knowledge(knowledge_before,
knowledge_after)
return knowledge_diff_getter
def process(self, row):
knowledge_before = copy.deepcopy(self.knowledge)
with session().log("Process: {}".format(row)):
fit = list(self.layers.process(self, row))
if len(fit) == 0:
return None
tokens, inferred_tree = fit[0]
result = knowledge_evaluation.integrate_information(self.knowledge,
{
"elements": tokens,
"parsed": inferred_tree,
})
self.act_upon(result)
session().annotate("Result: {}".format(result))
knowledge_after = copy.deepcopy(self.knowledge)
knowledge_diff_getter = lambda: diff_knowledge(knowledge_before,
knowledge_after)
return result, inferred_tree, knowledge_diff_getter
def get_value(self, result):
if is_modifiable_property(result):
return result.getter()
else:
return result
def act_upon(self, result):
if is_modifiable_property(result):
result.setter()
else:
logging.warning("Cannot act upon: {}".format(result))