lang-model/naive-nlu/tree_nlu/layers/tokenization_layer.py

90 lines
3.1 KiB
Python

from ..session.org_mode import global_session as session
from ..atoms import Atom
from . import tokenization
import random
import copy
def randomized_weighted_list(elements):
# Randomized
randomized = list(elements)
random.shuffle(randomized)
# And return only once
already_returned = set()
for e in randomized:
if e in already_returned:
continue
yield e
already_returned.add(e)
class TokenizationLayer:
def __init__(self, knowledge_base):
self.structural_elements = set()
self.token_chains = {}
self.tokens = set()
self.knowledge_base = knowledge_base
self.knowledge = knowledge_base.knowledge
def integrate(self, knowledge_base, data):
assert knowledge_base is self.knowledge_base
assert 'text' in data
tokens = self.tokenize(data['text'])
data_with_row = copy.copy(data)
data_with_row['tokens'] = tokens
yield data_with_row
# with session().log("Tokenize: {}".format(data['text'])):
# for tokens in tokenization.to_tokens(self, data['text']):
# data_with_row = copy.copy(data)
# data_with_row['tokens'] = tokens
# yield data_with_row
def process(self, knowledge_base, row):
yield self.tokenize(row)
def tokenize(self, row, return_one=True):
row = row.lower()
with session().log("Tokenize: {}".format(row)):
options = list(tokenization.to_tokens(self, row))
session().log("Results:\n{}".format('\n'.join(map(str, options))))
if return_one:
chosen = tokenization.pick_one_tokenization(options, self)
session().log("Chosen: “{}".format(chosen))
self.train({'text': row, 'tokens': chosen})
return chosen
return options
## Tokenization
def add_token_pair(self, precedent, consequent):
self.add_token(precedent)
self.add_token(consequent)
if precedent not in self.token_chains:
self.token_chains[precedent] = []
self.token_chains[precedent].append(consequent)
def add_token(self, token):
self.tokens.add(token)
if (not isinstance(token, Atom)) and (token not in self.structural_elements):
session().annotate('Found new structural element “{}'.format(token))
self.structural_elements.add(token)
def expected_token_after_precedent(self, precedent=None):
if precedent not in self.token_chains: # If there's no known precedent, just return all tokens
return randomized_weighted_list(self.tokens)
return randomized_weighted_list(self.token_chains[precedent])
def train(self, example):
with session().log('Training tokenizer'):
session().annotate("Example: {}".format(example))
tokens = tokenization.integrate_tokenization(self, example)
# Integrate knowledge of concept
for token in tokens:
if not token in self.knowledge:
self.knowledge[token] = {}