#!/usr/bin/env python from . import knowledge_evaluation from . import depth_meter import logging import re import copy from functools import reduce from typing import List, Dict from .modifiable_property import ModifiableProperty from . import parameters # TODO: more flexible tokenization def to_tokens(text): return re.findall(r'(\w+|[^\s])', text) def make_template(knowledge_base, tokens, parsed): matcher = list(tokens) template = list(parsed) logging.debug(" -- MK TEMPLATE --") logging.debug("MATCHR: {}".format(matcher)) logging.debug("TEMPLT: {}".format(template)) for i in range(len(matcher)): word = matcher[i] if word in template: template[template.index(word)] = i matcher[i] = { 'groups': set(knowledge_base.knowledge[word]['groups']) } return tokens, matcher, template def is_bottom_level(tree): for element in tree: if isinstance(element, list) or isinstance(element, tuple): return False return True def get_lower_levels(parsed): lower = [] def aux(subtree, path): nonlocal lower deeper = len(path) == 0 for i, element in enumerate(subtree): if isinstance(element, list) or isinstance(element, tuple): aux(element, path + (i,)) deeper = True if not deeper: lower.append((path, subtree)) aux(parsed, path=()) return lower # TODO: probably optimize this, it creates lots of unnecessary tuples def replace_position(tree, position, new_element): logging.debug("REPLACE POSITIONS:") logging.debug(" TREE : {}".format(tree)) logging.debug("POSITION: {}".format(position)) logging.debug("NEW ELEM: {}".format(new_element)) logging.debug("------------------") def aux(current_tree, remaining_route): if len(remaining_route) == 0: return new_element else: step = remaining_route[0] return ( tree[:step] + (aux(tree[step], remaining_route[1:]),) + tree[step + 2:] ) result = aux(tree, position) logging.debug("-RESULT: {}".format(result)) return result def integrate_language(knowledge_base, example): text = example["text"].lower() parsed = example["parsed"] resolved_parsed = copy.deepcopy(parsed) tokens = to_tokens(text) while True: logging.debug("P: {}".format(resolved_parsed)) lower_levels = get_lower_levels(resolved_parsed) logging.debug("Lower: {}".format(lower_levels)) if len(lower_levels) == 0: break for position, atom in lower_levels: logging.debug("\x1b[1mSelecting\x1b[0m: {}".format(atom)) similar = get_similar_tree(knowledge_base, atom, tokens) remix, (start_bounds, end_bounds) = build_remix_matrix(knowledge_base, tokens, atom, similar) after_remix = apply_remix(tokens[len(start_bounds):-len(end_bounds)], remix) logging.debug("--FIND MIX--") logging.debug("-MIX- | {}".format(remix)) logging.debug("-FRM- | {}".format(tokens)) logging.debug("-AFT- | {}".format(after_remix)) print() _, matcher, result = make_template(knowledge_base, after_remix, atom) logging.debug("Tx: {}".format(after_remix)) logging.debug("Mx: {}".format(matcher)) logging.debug("Rx: {}".format(result)) logging.debug("Sx: {}".format(start_bounds)) logging.debug("Ex: {}".format(end_bounds)) assert(len(after_remix) + len(start_bounds) + len(end_bounds) == len(tokens)) logging.debug( " +-> {}".format(after_remix)) subquery_type = knowledge_evaluation.get_subquery_type(knowledge_base.knowledge, atom) logging.debug(r" \-> <{}>".format(subquery_type)) # Clean remaining tokens new_tokens = list(tokens) offset = len(start_bounds) for _ in range(len(remix)): new_tokens.pop(offset) # TODO: Get a specific types for... types new_tokens.insert(offset, (subquery_type, remix)) tokens = new_tokens resolved_parsed = replace_position(resolved_parsed, position, offset) logging.debug("RP: {}".format(resolved_parsed)) logging.debug("AT: {}".format(atom)) logging.debug("#########") tokens, matcher, result = make_template(knowledge_base, tokens, resolved_parsed) logging.debug("T: {}".format(tokens)) logging.debug("M: {}".format(matcher)) logging.debug("R: {}".format(result)) logging.debug("---") return tokens, matcher, result def apply_remix(tokens, remix): rebuilt = [] for i in remix: if isinstance(i, int): if i >= len(tokens): return None rebuilt.append(tokens[i]) else: assert(isinstance(i, str)) rebuilt.append(i) return rebuilt def build_remix_matrix(knowledge_base, tokens, atom, similar): tokens = list(tokens) tokens, matcher, result = make_template(knowledge_base, tokens, atom) similar_matcher, similar_result, similar_result_resolved, _, _ = similar start_bounds, end_bounds = find_bounds(knowledge_base, matcher, similar_matcher) for i, element in (end_bounds + start_bounds[::-1]): matcher.pop(i) tokens.pop(i) possible_remixes = get_possible_remixes(knowledge_base, matcher, similar_matcher) chosen_remix = possible_remixes[0] return chosen_remix, (start_bounds, end_bounds) def get_possible_remixes(knowledge_base, matcher, similar_matcher): matrix = [] for element in matcher: logging.debug("- {}".format(element)) logging.debug("+ {}".format(similar_matcher)) if element in similar_matcher or isinstance(element, dict): if isinstance(element, dict): indexes = all_matching_indexes(knowledge_base, similar_matcher, element) else: indexes = all_indexes(similar_matcher, element) matrix.append(indexes) else: matrix.append([element]) # TODO: do some scoring to find the most "interesting combination" return [list(x) for x in list(zip(*matrix))] def all_indexes(collection, element): indexes = [] base = 0 for _ in range(collection.count(element)): i = collection.index(element, base) base = i + 1 indexes.append(i) return indexes def all_matching_indexes(knowledge_base, collection, element): indexes = [] assert("groups" in element) element = element["groups"] for i, instance in enumerate(collection): if isinstance(instance, dict): instance = instance["groups"] elif instance in knowledge_base.knowledge: instance = knowledge_base.knowledge[instance]["groups"] intersection = set(instance) & set(element) if (len(intersection) > 0 or (0 == len(instance) == len(element))): indexes.append((i, intersection)) return [x[0] for x in sorted(indexes, key=lambda x: len(x[1]), reverse=True)] def element_matches_groups(knowledge, element: Dict, groups): if isinstance(groups, str) and groups in knowledge: return len(knowledge[element].get("groups", set()) & element['groups']) > 0 elif isinstance(groups, dict): return len(element.get("groups", set()) & element['groups']) > 0 return False def find_bounds(knowledge, matcher, similar_matcher): start_bounds = [] for i, element in enumerate(matcher): if element in similar_matcher: break else: start_bounds.append((i, element)) end_bounds = [] for i, element in enumerate(matcher[::-1]): in_similar = False if isinstance(element, str): in_similar = element in similar_matcher elif isinstance(element, dict): in_similar = any(map(lambda groups: element_matches_groups(knowledge.knowledge, element, groups), similar_matcher)) if in_similar: break else: end_bounds.append((len(matcher) - (i + 1), element)) return start_bounds, end_bounds def get_similar_tree(knowledge_base, atom, tokens): possibilities = [] # Find matching possibilities for entry, tree in knowledge_base.trained: if not is_bottom_level(tree): continue if tree[0] == atom[0]: possibilities.append((entry, tree)) # Sort by more matching elements sorted_possibilities = [] for (raw, possibility) in possibilities: resolved = [] for element in atom: if isinstance(element, str): resolved.append(element) else: resolved.append(knowledge_evaluation.resolve( knowledge_base.knowledge, element, raw)) # TODO: Probably should take into account the categories of the elements in the "intake" ([0]) element atom_score = sum([resolved[i] == atom[i] for i in range(min(len(resolved), len(atom)))]) token_score = sum([similar_token in tokens for similar_token in raw]) sorted_possibilities.append((raw, possibility, resolved, atom_score, token_score)) sorted_possibilities = sorted(sorted_possibilities, key=lambda p: p[3] * 100 + p[4], reverse=True) if len(sorted_possibilities) < 1: return None for i, possibility in enumerate(sorted_possibilities): logging.debug('---- POSSIBILITY #{} ----'.format(i)) similar_matcher, similar_result, similar_result_resolved, _, _ = possibility logging.debug('AST: {}'.format(similar_result)) logging.debug('Based on: {}'.format(similar_matcher)) logging.debug('Results on: {}'.format(similar_result_resolved)) logging.debug('---------------------') return sorted_possibilities[0] # TODO: unroll this mess def get_matching(sample, other): l = len(sample[0]) other = list(filter(lambda x: len(x[0]) == l, other)) for i in range(l): if len(other) == 0: return [] if isinstance(sample[0][i], dict): # Dictionaries are compared by groups other = list(filter(lambda x: isinstance(x[0][i], dict) and len(x[0][i]['groups'] & sample[0][i]['groups']) > 0, other)) elif isinstance(sample[0][i], tuple): # Tuples are compared by types [0] other = list(filter(lambda x: isinstance(x[0][i], tuple) and x[0][i][0] == sample[0][i][0], other)) matching = [] for x in range(l): # Generate the combination of this and other(s) matcher first_sample_data = sample[0][x] if isinstance(first_sample_data, str): matching.append(first_sample_data) elif isinstance(first_sample_data, tuple): matching.append(first_sample_data) else: this_groups = sample[0][x]['groups'] if len(other) > 0: other_groups = reduce(lambda a, b: a & b, map(lambda y: y[0][x]['groups'], other)) this_groups = this_groups & other_groups matching.append({'groups': this_groups}) return matching def reprocess_language_knowledge(knowledge_base, examples): examples = knowledge_base.examples + examples pattern_examples = [] for i, sample in enumerate(examples): other = examples[:i] + examples[i + 1:] match = get_matching(sample, other) if len(match) > 0: sample = (match, sample[1],) pattern_examples.append(sample) return pattern_examples def reverse_remix(tree_section, remix): result_section = [] offset = 0 for origin in remix: if isinstance(origin, int): if (origin + offset) >= len(tree_section): return None result_section.append(copy.deepcopy(tree_section[origin + offset])) else: assert(isinstance(origin, str)) offset += 1 return result_section + tree_section[len(remix):] def get_fit(knowledge, tokens, remaining_recursions=parameters.MAX_RECURSIONS): results = [] for matcher, ast in knowledge.trained: result = match_fit(knowledge, tokens, matcher, ast, remaining_recursions) if result is not None: results.append(result) print("XXX", result) print(' - ' + '\n - '.join(map(str, results))) if len(results) > 0: return results[0] def is_definite_minisegment(minisegment): return isinstance(minisegment, str) or isinstance(minisegment, dict) def match_token(knowledge, next_token, minisegment): if isinstance(minisegment, dict): return knowledge_evaluation.can_be_used_in_place(knowledge, next_token, minisegment) elif isinstance(minisegment, str): # TODO: check if the two elements can be used in each other place return next_token == minisegment return False def resolve_fit(knowledge, fit, remaining_recursions): fitted = [] for element in fit: if is_definite_minisegment(element): fitted.append(element) else: ((result_type, remixer), tokens) = element remixed_tokens = reverse_remix(tokens, remixer) if remixed_tokens is None: return None # if len(tokens) == 3 and tokens[2] == 'electricity': # logging.debug("--UNMIX--") # logging.debug("-MIX- | {}".format(remixer)) # logging.debug("REMIX | {}".format(tokens)) # logging.debug(" T O | {}".format(remixed_tokens)) # if remixer != [0, 1, 2]: # return None minifit = get_fit(knowledge, remixed_tokens, remaining_recursions - 1) if minifit is None: return None minitokens, miniast = minifit logging.debug(" AST | {}".format(miniast)) subproperty = knowledge_evaluation.resolve(knowledge.knowledge, minitokens, miniast) fitted.append(subproperty) return fitted def match_fit(knowledge, tokens, matcher, ast, remaining_recursions): segment_possibilities = [([], tokens)] # Matched tokens, remaining tokens indent = ' ' * (parameters.MAX_RECURSIONS - remaining_recursions) for minisegment in matcher: possibilities_after_round = [] for matched_tokens, remaining_tokens in segment_possibilities: if len(remaining_tokens) < 1: continue if is_definite_minisegment(minisegment): if match_token(knowledge, remaining_tokens[0], minisegment): possibilities_after_round.append(( matched_tokens + [remaining_tokens[0]], remaining_tokens[1:] )) else: # TODO: optimize this with a look ahead for i in range(1, len(tokens)): possibilities_after_round.append(( matched_tokens + [(minisegment, remaining_tokens[:i])], remaining_tokens[i:] )) else: segment_possibilities = possibilities_after_round fully_matched_segments = [(matched, remaining) for (matched, remaining) in segment_possibilities if len(remaining) == 0] resolved_fits = [] for fit, _ in fully_matched_segments: print(indent + ":::", fit) # REMIXES HAVE TO BE APPLIED BEFORE!!! print(indent + '*' * 20) for fit, _ in fully_matched_segments: print(indent + ":::", fit) # REMIXES HAVE TO BE APPLIED BEFORE!!! resolved_fit = resolve_fit(knowledge, fit, remaining_recursions) if resolved_fit is not None: resolved_fits.append(resolved_fit) if len(resolved_fits) == 0: return None return resolved_fits[0], ast