Separation of functionalities in modules.
This commit is contained in:
parent
5b30713df1
commit
edc3cb97ab
8
naive-nlu/knowledge_base.py
Normal file
8
naive-nlu/knowledge_base.py
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
import collections
|
||||||
|
|
||||||
|
KnowledgeBase = collections.namedtuple('KnowledgeBase',
|
||||||
|
[
|
||||||
|
'examples', # Language examples
|
||||||
|
'knowledge', # Knowledge about the world
|
||||||
|
'trained',
|
||||||
|
])
|
33
naive-nlu/knowledge_evaluation.py
Normal file
33
naive-nlu/knowledge_evaluation.py
Normal file
@ -0,0 +1,33 @@
|
|||||||
|
from knowledge_base import KnowledgeBase
|
||||||
|
|
||||||
|
|
||||||
|
def property_for_value(knowledge_base: KnowledgeBase, value):
|
||||||
|
return knowledge_base[value]['as_property']
|
||||||
|
|
||||||
|
|
||||||
|
def exists_property_with_value(knowledge_base: KnowledgeBase, subj, value):
|
||||||
|
|
||||||
|
knowledge_base[subj][property_for_value(knowledge_base, value)] = value
|
||||||
|
|
||||||
|
|
||||||
|
def pertenence_to_group(knowledge_base: KnowledgeBase, subj, group):
|
||||||
|
knowledge_base[subj]["group"] = group
|
||||||
|
|
||||||
|
|
||||||
|
def has_capacity(knowledge_base: KnowledgeBase, subj, capacity):
|
||||||
|
if "capacities" not in knowledge_base[subj]:
|
||||||
|
knowledge_base[subj]["capacities"] = []
|
||||||
|
knowledge_base[subj]["capacities"].append(capacity)
|
||||||
|
|
||||||
|
|
||||||
|
knowledge_ingestion = {
|
||||||
|
"exists-property-with-value": exists_property_with_value,
|
||||||
|
"pertenence-to-group": pertenence_to_group,
|
||||||
|
"has-capacity": has_capacity,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def integrate_information(knowledge_base: KnowledgeBase, example):
|
||||||
|
method = example['parsed'][0]
|
||||||
|
args = example['parsed'][1:]
|
||||||
|
knowledge_ingestion[method](knowledge_base, *args)
|
148
naive-nlu/nlu.py
148
naive-nlu/nlu.py
@ -1,130 +1,6 @@
|
|||||||
import collections
|
from knowledge_base import KnowledgeBase
|
||||||
from functools import reduce
|
import knowledge_evaluation
|
||||||
|
import parsing
|
||||||
|
|
||||||
# # # # # # # # # # Base representation
|
|
||||||
|
|
||||||
KnowledgeBase = collections.namedtuple('KnowledgeBase',
|
|
||||||
[
|
|
||||||
'examples', # Language examples
|
|
||||||
'knowledge', # Knowledge about the world
|
|
||||||
'trained',
|
|
||||||
])
|
|
||||||
|
|
||||||
# # # # # # # # # # Interpretation
|
|
||||||
|
|
||||||
|
|
||||||
def property_for_value(knowledge_base, value):
|
|
||||||
return knowledge_base[value]['as_property']
|
|
||||||
|
|
||||||
|
|
||||||
def exists_property_with_value(knowledge_base, subj, value):
|
|
||||||
|
|
||||||
knowledge_base[subj][property_for_value(knowledge_base, value)] = value
|
|
||||||
|
|
||||||
|
|
||||||
def pertenence_to_group(knowledge_base, subj, group):
|
|
||||||
knowledge_base[subj]["group"] = group
|
|
||||||
|
|
||||||
|
|
||||||
def has_capacity(knowledge_base, subj, capacity):
|
|
||||||
if "capacities" not in knowledge_base[subj]:
|
|
||||||
knowledge_base[subj]["capacities"] = []
|
|
||||||
knowledge_base[subj]["capacities"].append(capacity)
|
|
||||||
|
|
||||||
|
|
||||||
knowledge_ingestion = {
|
|
||||||
"exists-property-with-value": exists_property_with_value,
|
|
||||||
"pertenence-to-group": pertenence_to_group,
|
|
||||||
"has-capacity": has_capacity,
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def integrate_information(knowledge_base, example):
|
|
||||||
method = example['parsed'][0]
|
|
||||||
args = example['parsed'][1:]
|
|
||||||
knowledge_ingestion[method](knowledge_base, *args)
|
|
||||||
|
|
||||||
# # # # # # # # # # Parsing
|
|
||||||
|
|
||||||
|
|
||||||
def make_template(knowledge_base: KnowledgeBase, text, parsed):
|
|
||||||
tokens = text.split()
|
|
||||||
template = list(parsed)
|
|
||||||
for i in range(len(tokens)):
|
|
||||||
word = tokens[i]
|
|
||||||
if word in template:
|
|
||||||
print(word, i, template)
|
|
||||||
template[template.index(word)] = i
|
|
||||||
print(knowledge_base)
|
|
||||||
tokens[i] = {'groups': set(knowledge_base.knowledge[word]['groups'])}
|
|
||||||
return tokens, template
|
|
||||||
|
|
||||||
|
|
||||||
def integrate_language(knowledge_base: KnowledgeBase, example):
|
|
||||||
text = example["text"].lower()
|
|
||||||
parsed = example["parsed"]
|
|
||||||
matcher, result = make_template(knowledge_base, text, parsed)
|
|
||||||
print(text)
|
|
||||||
print(parsed)
|
|
||||||
print()
|
|
||||||
return matcher, result
|
|
||||||
|
|
||||||
|
|
||||||
def train(knowledge_base: KnowledgeBase, examples):
|
|
||||||
|
|
||||||
# Parse everything
|
|
||||||
parsed_examples = []
|
|
||||||
for example in examples:
|
|
||||||
parsed_examples.append(integrate_language(knowledge_base, example))
|
|
||||||
|
|
||||||
# Reduce values
|
|
||||||
trained = reprocess_knowledge(knowledge_base, parsed_examples)
|
|
||||||
|
|
||||||
return KnowledgeBase(
|
|
||||||
knowledge=knowledge_base.knowledge,
|
|
||||||
examples=knowledge_base.examples + parsed_examples,
|
|
||||||
trained=trained,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def reprocess_knowledge(knowledge_base, examples):
|
|
||||||
examples = knowledge_base.examples + examples
|
|
||||||
|
|
||||||
print('\n'.join(map(str, knowledge_base.examples)))
|
|
||||||
print("--")
|
|
||||||
|
|
||||||
pattern_examples = []
|
|
||||||
for i, sample in enumerate(examples):
|
|
||||||
other = examples[:i] + examples[i + 1:]
|
|
||||||
print(sample)
|
|
||||||
match = get_matching(sample, other)
|
|
||||||
print("->", match)
|
|
||||||
if len(match) > 0:
|
|
||||||
sample = (match, sample[1],)
|
|
||||||
pattern_examples.append(sample)
|
|
||||||
print()
|
|
||||||
return pattern_examples
|
|
||||||
|
|
||||||
|
|
||||||
def get_matching(sample, other):
|
|
||||||
l = len(sample[0])
|
|
||||||
other = list(filter(lambda x: len(x[0]) == l, other))
|
|
||||||
for i in range(l):
|
|
||||||
if len(other) == 0:
|
|
||||||
return []
|
|
||||||
|
|
||||||
if not isinstance(sample[0][i], str):
|
|
||||||
other = list(filter(lambda x: not isinstance(x[0][i], str) and
|
|
||||||
len(x[0][i]['groups'] & sample[0][i]['groups']) > 0,
|
|
||||||
other))
|
|
||||||
|
|
||||||
return [sample[0][x] if isinstance(sample[0][x], str)
|
|
||||||
else {'groups': sample[0][x]['groups'] & reduce(lambda a, b: a & b,
|
|
||||||
map(lambda y: y[0][x]['groups'],
|
|
||||||
other))}
|
|
||||||
for x
|
|
||||||
in range(l)]
|
|
||||||
|
|
||||||
|
|
||||||
def get_fit(knowledge: KnowledgeBase, row):
|
def get_fit(knowledge: KnowledgeBase, row):
|
||||||
@ -137,3 +13,21 @@ def get_fit(knowledge: KnowledgeBase, row):
|
|||||||
return sample, ast
|
return sample, ast
|
||||||
else:
|
else:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def train(knowledge_base: KnowledgeBase, examples):
|
||||||
|
|
||||||
|
# Parse everything
|
||||||
|
parsed_examples = []
|
||||||
|
for example in examples:
|
||||||
|
parsed_examples.append(parsing.integrate_language(knowledge_base, example))
|
||||||
|
|
||||||
|
# Reduce values
|
||||||
|
trained = parsing.reprocess_language_knowledge(knowledge_base, parsed_examples)
|
||||||
|
|
||||||
|
return KnowledgeBase(
|
||||||
|
knowledge=knowledge_base.knowledge,
|
||||||
|
examples=knowledge_base.examples + parsed_examples,
|
||||||
|
trained=trained,
|
||||||
|
)
|
||||||
|
|
||||||
|
69
naive-nlu/parsing.py
Normal file
69
naive-nlu/parsing.py
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
from functools import reduce
|
||||||
|
|
||||||
|
from knowledge_base import KnowledgeBase
|
||||||
|
|
||||||
|
|
||||||
|
def make_template(knowledge_base: KnowledgeBase, text, parsed):
|
||||||
|
tokens = text.split()
|
||||||
|
template = list(parsed)
|
||||||
|
for i in range(len(tokens)):
|
||||||
|
word = tokens[i]
|
||||||
|
if word in template:
|
||||||
|
print(word, i, template)
|
||||||
|
template[template.index(word)] = i
|
||||||
|
print(knowledge_base)
|
||||||
|
tokens[i] = {'groups': set(knowledge_base.knowledge[word]['groups'])}
|
||||||
|
return tokens, template
|
||||||
|
|
||||||
|
|
||||||
|
def integrate_language(knowledge_base: KnowledgeBase, example):
|
||||||
|
text = example["text"].lower()
|
||||||
|
parsed = example["parsed"]
|
||||||
|
matcher, result = make_template(knowledge_base, text, parsed)
|
||||||
|
print(text)
|
||||||
|
print(parsed)
|
||||||
|
print()
|
||||||
|
return matcher, result
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def get_matching(sample, other):
|
||||||
|
l = len(sample[0])
|
||||||
|
other = list(filter(lambda x: len(x[0]) == l, other))
|
||||||
|
for i in range(l):
|
||||||
|
if len(other) == 0:
|
||||||
|
return []
|
||||||
|
|
||||||
|
if not isinstance(sample[0][i], str):
|
||||||
|
other = list(filter(lambda x: not isinstance(x[0][i], str) and
|
||||||
|
len(x[0][i]['groups'] & sample[0][i]['groups']) > 0,
|
||||||
|
other))
|
||||||
|
|
||||||
|
return [sample[0][x] if isinstance(sample[0][x], str)
|
||||||
|
else {'groups': sample[0][x]['groups'] & reduce(lambda a, b: a & b,
|
||||||
|
map(lambda y: y[0][x]['groups'],
|
||||||
|
other))}
|
||||||
|
for x
|
||||||
|
in range(l)]
|
||||||
|
|
||||||
|
|
||||||
|
def reprocess_language_knowledge(knowledge_base, examples):
|
||||||
|
examples = knowledge_base.examples + examples
|
||||||
|
|
||||||
|
print('\n'.join(map(str, knowledge_base.examples)))
|
||||||
|
print("--")
|
||||||
|
|
||||||
|
pattern_examples = []
|
||||||
|
for i, sample in enumerate(examples):
|
||||||
|
other = examples[:i] + examples[i + 1:]
|
||||||
|
print(sample)
|
||||||
|
match = get_matching(sample, other)
|
||||||
|
print("->", match)
|
||||||
|
if len(match) > 0:
|
||||||
|
sample = (match, sample[1],)
|
||||||
|
pattern_examples.append(sample)
|
||||||
|
print()
|
||||||
|
return pattern_examples
|
||||||
|
|
Loading…
Reference in New Issue
Block a user