Add learning phase to shallow (1 level) nested structures.

This commit is contained in:
kenkeiras 2017-05-15 16:51:39 +02:00
parent 099af2a815
commit 5f6b067e17
4 changed files with 111 additions and 27 deletions

View File

@ -22,6 +22,7 @@ class KnowledgeBase(object):
# Parse everything
parsed_examples = []
for example in examples:
print("\x1b[7;32m> {} \x1b[0m".format(example))
tokens, decomposition, inferred_tree = parsing.integrate_language(self, example)
print(tokens)
result = knowledge_evaluation.integrate_information(self.knowledge, {
@ -29,7 +30,10 @@ class KnowledgeBase(object):
"decomposition": decomposition,
"parsed": inferred_tree,
})
print("\x1b[7;33m< {} \x1b[0m".format(self.get_value(result)))
self.act_upon(result)
print("\x1b[7;34m< {} \x1b[0m".format(self.get_value(result)))
self.examples.append((decomposition, inferred_tree))
# Reduce values
@ -59,6 +63,12 @@ class KnowledgeBase(object):
return result, inferred_tree, knowledge_diff_getter
def get_value(self, result):
if isinstance(result, ModifiableProperty):
return result.getter()
else:
return result
def act_upon(self, result):
if isinstance(result, ModifiableProperty):
result.setter()

View File

@ -12,9 +12,33 @@ def resolve(knowledge_base, elements, value):
return value
# TODO: improve typing
def infer_type(result):
if isinstance(result, bool):
return "bool"
elif isinstance(result, int):
return "int"
else:
raise Exception("Unknown type for value: {}".format(result))
def get_subquery_type(knowledge_base, atom):
subquery_result = integrate_information(knowledge_base,
{
"parsed": atom,
"elements": [],
})
assert (subquery_result is not None)
result = subquery_result.getter()
result_type = infer_type(result)
return result_type
def property_for_value(knowledge_base, value):
print(value)
print(knowledge_base[value])
# print(value)
# print(knowledge_base[value])
return knowledge_base[value]['as_property']
@ -27,6 +51,11 @@ def modifiable_property_from_property(prop, path, value):
nonlocal prop, path, value
prop[path] = value
return ModifiableProperty(
getter=getter,
setter=setter,
)
def exists_property_with_value(knowledge_base, elements, subj, value):
subj = resolve(knowledge_base, elements, subj)
@ -50,6 +79,7 @@ def modifiable_element_for_existance_in_set(container, set_name, element):
def setter():
nonlocal container, set_name, element
return container[set_name].add(element)
return ModifiableProperty(
getter=getter,
setter=setter,

View File

@ -3,10 +3,16 @@
import knowledge_evaluation
import re
import copy
from functools import reduce
def make_template(knowledge_base, text, parsed):
tokens = re.findall(r'(\w+|[^\s])', text)
# TODO: more flexible tokenization
def to_tokens(text):
return re.findall(r'(\w+|[^\s])', text)
def make_template(knowledge_base, tokens, parsed):
matcher = list(tokens)
template = list(parsed)
for i in range(len(matcher)):
@ -28,50 +34,85 @@ def is_bottom_level(tree):
def get_lower_levels(parsed):
lower = []
def aux(subtree, top_level):
def aux(subtree, path):
nonlocal lower
deeper = top_level
for element in subtree:
deeper = len(path) == 0
for i, element in enumerate(subtree):
if isinstance(element, list) or isinstance(element, tuple):
aux(element, top_level=False)
aux(element, path + (i,))
deeper = True
if not deeper:
lower.append(subtree)
lower.append((path, subtree))
aux(parsed, top_level=True)
aux(parsed, path=())
return lower
# TODO: probably optimize this, it creates lots of unnecessary tuples
def replace_position(tree, position, new_element):
def aux(current_tree, remaining_route):
if len(remaining_route) == 0:
return new_element
else:
step = remaining_route[0]
return (
tree[:step]
+ (aux(tree[step], remaining_route[1:]),)
+ tree[step + 2:]
)
return aux(tree, position)
def integrate_language(knowledge_base, example):
text = example["text"].lower()
parsed = example["parsed"]
print("P:", parsed)
resolved_parsed = copy.deepcopy(parsed)
tokens = to_tokens(text)
while True:
lower_levels = get_lower_levels(parsed)
print("P:", resolved_parsed)
lower_levels = get_lower_levels(resolved_parsed)
print("Lower:", lower_levels)
if len(lower_levels) == 0:
break
for atom in lower_levels:
for position, atom in lower_levels:
print("\x1b[1mSelecting\x1b[0m:", atom)
similar = get_similar_tree(knowledge_base, atom)
print("___>", similar)
remix, (start_bounds, end_bounds) = build_remix_matrix(knowledge_base, text, atom, similar)
tokens, matcher, result = make_template(knowledge_base, text, atom)
remix, (start_bounds, end_bounds) = build_remix_matrix(knowledge_base, tokens, atom, similar)
_, matcher, result = make_template(knowledge_base, tokens, atom)
print("Tx:", tokens)
print("Mx:", matcher)
print("Rx:", result)
print("Remix:", remix)
after_remix = apply_remix(tokens[len(start_bounds):-len(end_bounds)], remix)
assert(len(after_remix) + len(start_bounds) + len(end_bounds) == len(tokens))
print(" \\->", after_remix)
print( " +->", after_remix)
subquery_type = knowledge_evaluation.get_subquery_type(knowledge_base.knowledge, atom)
print(r" \-> <{}>".format(subquery_type))
# Clean remaining tokens
new_tokens = list(tokens)
offset = len(start_bounds)
for _ in range(len(remix)):
new_tokens.pop(offset)
# TODO: Get a specific types for... types
new_tokens.insert(offset, "<type: {}>".format(subquery_type))
tokens = new_tokens
resolved_parsed = replace_position(resolved_parsed, position, subquery_type)
print("#########")
break
tokens, matcher, result = make_template(knowledge_base, text, parsed)
tokens, matcher, result = make_template(knowledge_base, tokens, parsed)
print("T:", tokens)
print("M:", matcher)
print("R:", result)
@ -86,10 +127,11 @@ def apply_remix(tokens, remix):
return rebuilt
def build_remix_matrix(knowledge_base, text, atom, similar):
def build_remix_matrix(knowledge_base, tokens, atom, similar):
# print("+" * 20)
tokens, matcher, result = make_template(knowledge_base, text, atom)
tokens = list(tokens)
tokens, matcher, result = make_template(knowledge_base, tokens, atom)
similar_matcher, similar_result, similar_result_resolved, _ = similar
# print("NEW:")

View File

@ -11,10 +11,10 @@ examples = [
"text": "is icecream cold?",
"parsed": ("question", ("exists-property-with-value", 'icecream', 'cold'))
},
# {
# "text": "lava is dangerous",
# "parsed": ("exists-property-with-value", 'lava', 'dangerous')
# },
{
"text": "lava is dangerous",
"parsed": ("exists-property-with-value", 'lava', 'dangerous')
},
# {
# "text": "is lava dangerous?",
# "parsed": ("question", ("exists-property-with-value", 'lava', 'dangerous')),
@ -100,10 +100,12 @@ def main():
)
differences = knowledge.train(examples)
# print("----")
# print(differences())
# print("----")
print("----")
print(differences())
print("----")
test_assumption(True, knowledge, {'text': 'is lava dangerous?'})
# for test in [{'text': 'a bus can run'}, {'text': 'io is a moon'}]:
# row = test['text']
# result, inferred_tree, differences = knowledge.process(row)